

 [image: vif]
Documentation

vif is a set of library and tools built to provide user-friendly vector data manipulation, as offered in interpreted languages like IDL [http://www.exelisvis.com/ProductsServices/IDL.aspx], its open source clone GDL [http://gnudatalanguage.sourceforge.net/], or Python and numpy [http://www.numpy.org/], but with the added benefit of C++: increased robustness, and optimal speed.

The library can be split into two components:

	The “core” library

	The “support” library

The core library introduces the vec type (a “data vector”), which is the most important data type in vif, while the support library provides functions and other tools to manipulate these vectors and perform common tasks. You can think of vif as a separate language inside C++, where the core library defines this language, and the support library is the the “standard” library where all the useful functions are stored.

Below is a code sample written in vif that illustrates the most basic functionalities.

using namespace vif; // import everything in current namespace
vec2f img = fits::read("img.fits"); // read a FITS image
img -= median(img); // subtract the median of the whole image
float imax = max(img); // find the maximum of the image
vec1u ids = where(img > 0.5*imax); // find pixels at least half as bright
float sum = total(img[ids]); // compute the sum of these pixels
img[ids] = log(img[ids]/sum); // modify these pixels with a logarithm
fits::write("new.fits", img); // save the modified image to a FITS file

The core library

	Overview of the core library

	Vectors
	Overview

	Type aliases

	Size and dimensions

	Initialization and assignment

	Resizing and adding elements

	Type conversion, and casting

	Operator overloading

	Constant vectors

	Indexing
	Flat and multidimensional indices

	Bounds checking, and safe indexing

	Loops, and traversing data

	Partial indexing

	Views
	Overview

	Range indexing

	Filtering and selecting elements

	Differences between views and vectors

	Constant views and views on constant data

	Aliasing

	Known issues, problems, and limitations
	Dangling views

	Invalid views

	Guidelines for writing generic functions
	What is a generic function?

	Summary of guidelines

	Expressing constraints on function arguments

	Supporting initializer lists

	Supporting both vectors and views

	Vectorizing scalar functions

	Output arguments and views

	Creating views

	Metaprogramming helpers

	IDL equivalents
	Crucial differences to always keep in mind

	Other notable differences

	Basics

	Control flow

	Creating, accessing, modifying vectors

	Vector operations

	Finding values

The support library

	Introduction
	Interface conventions

	Generic functions
	Range-based iteration

	Index manipulation

	Integer sequences

	Rearranging elements and dimensions

	Finding elements

	Error checking

	Command line arguments
	read_args

	Usage examples

	Flags

	Alternative syntax

	String manipulation
	String conversions

	Basic string operations

	Split and combine

	Formatting

	Find/replace

	Regular expressions (regex)

	Hash

	Printing to the terminal
	print

	error, warning, note

	prompt

	Interacting with the operating system
	Environment variables

	Processes

	File system
	File paths manipulation

	File system

	ASCII tables
	ascii::read_table

	ascii::write_table

	FITS files
	Overview

	Open/close files

	Managing HDUs

	Header & keywords

	FITS images

	FITS tables

	C interface

	Measuring time

	Mathematics

	Multi threading

	Image manipulation

	Astronomy library

Overview of the core library

At the core of the vif library is the vector class, vec. This is basically an enhanced std::vector, and it therefore shares most of its features and strengths. On top of the std::vector interface, the vif vectors have extra functionalities to simplify data analysis and calculations, including overloaded mathematical operators, multi-dimensional indexing, and the ability to create “views” to access and edit subsets of a given vector.

Here we will first describe the properties of the vector class, and then describe the vector views. Lastly, a guide for writing “generic” functions that work with any vector type is provided.

Vectors

Overview

A vector in vif is basically an enhanced std::vector (which, in fact, is used to implement the vif vectors), and it therefore shares most of its features and strengths.

In particular, a vector can contain zero, one, or as many elements as your computer can handle. Its size is defined at runtime, meaning that its content can vary depending on user input, and that it can change its total number of elements at any time. The elements of a vector are stored contiguously in memory, which provides optimal performances in most situations. Lastly, a vector is an homogeneous container, meaning that a given vector can only contain a single type of elements; for example int or float, but not both.

On top of the std::vector interface, the vif vectors have some extra functionalities. The most important ones are Operator overloading (which allows writing v+w instead of writing a loop to sum all the elements one by one), structured Indexing for multi-dimensional data (i.e., images, data cubes, and objects of higher dimensions), and Views (which allow accessing and modifying subsets of existing vectors).

Like in most advanced C++ libraries, vif vectors are template-based. This means they are designed to work with any data type T for their elements, for example int, float, or std::string. The type of a vector is therefore spelled vec<1,T>, where T can be replaced by any type (it could be a vector itself). There is no explicit restriction regarding the data type T, however some features may obviously not be available depending on the capabilities of your type. For example, if your type has no operator* (such as std::string), you will not be able to multiply vectors of this type. Lastly, the vif vector shares the same restrictions as the std::vector regarding the copyable and movable capabilities of the stored type.

The number of dimensions of a vector is specified in its type; this is the 1 in vec<1,T>. For example, a 2D image of float will be declared as vec<2,float> (or vec2f, see Type aliases below), while a 1D tabulated data set of int will be vec<1,int> (or vec1i). The fact that the number of dimensions is part of the type means that, while the number of elements in a vector is determined at runtime, the multi-dimensional nature of a vector is determined at compile time. In other words, a 1D vector cannot be turned into a 2D vector; you would have to create a new variable (using the reform() and flatten() functions). However it is possible to change, say, a 128x128 2D vector into a 256x256 2D vector. Only the number of dimensions is fixed, the length of each dimension is free to vary.

This restriction was imposed for two reasons: first, type safety, and second, performance. Since the compiler knows how many dimensions there are, it will output an error whenever you try to perform operations on two vectors of different dimensionality (for example, adding a 1D array to a 2D image; which would make no sense). In terms of performance, this also means that we also know at the time of compilation how many dimensions we need to deal with, so the compiler can more easily decide whether (or how) to unroll loops.

The hard limit on the number of dimensions depends on your compiler, as each dimension involves an additional level of template recursion. The C++ standard does not guarantee anything in this respect, but you should be able to go as high as 256 on all major compilers. Beyond this, you should probably see a therapist first.

Type aliases

While templates are a fantastic tool for library writers, they can easily become a burden for the user of the library, because of the additional syntax complexity (the <...> in the name of the vector type). Since vif is a numerical analysis library, we know in advance what types will most often be stored inside the vectors, and we therefore introduce type aliases for the most common vector types:

	vec1f: vector of float,

	vec1d: vector of double,

	vec1cf: vector of std::complex<float>,

	vec1cd: vector of std::complex<double>,

	vec1i: vector of int (precisely, int_t = std::ptrdiff_t),

	vec1u: vector of unsigned int (precisely, uint_t = std::size_t),

	vec1b: vector of bool,

	vec1s: vector of std::string,

	vec1c: vector of char.

Such type aliases are provided for dimensions up to 6 (i.e., vec6f exists, but not vec7f).

Size and dimensions

For any vector v, v.dims is an std::array that holds the length of each dimension of the vector: v.dims[0] is the number of elements along the first dimension, etc. This array is set automatically when the vector is created or resized, and should not be modified manually (except in very specific and rare circumstances).

The total number of elements in a vector can be obtained using v.size(), and this is equal to the product of all the dimensions of the vector. This is a cheap function, as the size is stored internally and does not need to be computed for each call. One can check if a vector is empty (i.e., contains no element) using v.empty(), which returns either true or false (this does not empty the vector).

Initialization and assignment

There are several ways to initialize and assign data to a vector:

	The “default” initialization, where the vector is empty.

	The “size” initialization, where the vector contains n default-constructed elements.

	The “list” initialization, where the vector is assigned a set of values.

	The “copy” initialization, where the vector contains a copy of the data from another vector.

	The “move” initialization, where the vector steals the data from another vector.

The last three can be used both for initialization and assignment (using operator=).

The “default” initialization is very cheap, since it involves no (or very little) allocation:

vec1f v; // empty

The “size” initialization pre-allocates memory for the data, which is very useful if you know in advance how many elements your vector needs to contain. The allocated data consists of elements which are default-constructed; this means a value of 0 for arithmetic types, false for bool, and empty strings for std::string.

vec1f v(10); // 10 zeros
vec2f w(10,20); // 200 zeros, arranged in a 2D shape of 10x20
vec3f z(w.dims,4); // 800 zeros, arranged in a 3D shape of 10x20x4

As shown in the last example (initializing z), the arguments of the constructor can be a mixture of integer values and std::array; the arrays can come, for example, from the dimensions of other existing vectors.

The “list” initialization explicitly specifies a set of values to be stored in the vector. This uses initializer lists, which can be nested for multidimensional vectors.

vec1f v = {1, 2, 3, 4); // values from 1 to 4
vec2f w = {{1, 2}, {3, 4}, {5, 6}}; // values from 1 to 6 arranged in a 2D shape of 3x2

The “copy” initialization trivially copies (and optionally converts, see Type conversion, and casting) the values of a vector into another one.

vec1f v = {1, 2, 3, 4); // values from 1 to 4
vec1f w = v; // also contains values from 1 to 4

The “move” initialization will “steal” the values of another vector. The vector from which the values are “stolen” then becomes empty, and can be reused for other purposes later. This will usually be much faster than the “copy” initialization above, if you do not mind the side effect.

vec1f v = {1, 2, 3, 4); // values from 1 to 4
vec1f w = std::move(v); // also contains values from 1 to 4, but now 'v' is empty

Resizing and adding elements

The dimensions and size of a vector can be modified in three main ways.

First, v.clear() will erase all the values from the vector and set all its dimensions to zero. This will set the vector in the state of a default-initialized vector (see above).

Second, v.resize(...) will change the dimensions of the vector. The parameters it accepts are the same as the “size” constructor (see above), i.e., either integral values for individual dimensions, or an std::array containing multiple dimensions, or any combination of these. While the total number of elements can be modified at will, the number of dimensions of the vector must remain unchanged.

vec2f w; // empty, zero elements
w.resize(20,10); // 20x10, 200 elements
w.resize(200,10); // 200x10, 2000 elements
w.resize(200,10,5); // error: cannot change a 2D vector into a 3D vector

Once the vector has been resized, its previous content is left in an undefined state, i.e., you can generally assume the previous values (if any) have been lost and replaced by meaningless garbage. The only exception is for 1D vectors. If the resize operation decreases the total number of elements, then values are erased from the end of the vector and the rest remains untouched. On the other hand, if the resize operation increased the total number of elements, new elements are inserted at the end of the vector, default constructed (i.e., zeros for integral types, etc.). This is the same behavior as std::vector.

Third, v.push_back(...) will add new values at the end of the vector, increasing its size. The behavior of this function is different for 1D and multidimensional vectors. For 1D vectors, this function appends a new element at the end of the vector, and therefore takes for argument a single scalar value. For multidimensional vectors, this function takes for argument another vector of D-1 dimensions, and whose lengths match the last D-1 dimensions of the first vector. The new vector is inserted after the existing elements in memory, and the first dimension of the first vector is increased by one.

vec1i v = {1,2,3};
v.push_back(4); // {1,2,3,4}

vec2i w = {{1,2,3}, {4,5,6}}; // shape 2x3
w.push_back({7,8,9}); // shape 3x3
w.push_back({7,8}); // error: dimensions do not match

For optimization, the push_back(...) function will generally be used in conjunction with v.reserve(). This function is identical to std::vector::reserve(). To understand what this function actually does, one needs to know the internal behavior of std::vector. At any instant, the std::vector only has enough memory to hold N elements, which is usually larger than the actual size of the vector. N is called the capacity of the vector. Once the allocated memory is full, and a new push_back() is called, std::vector allocates a larger amount of memory (typically 2*N elements), copies the existing elements inside this new memory, and frees the old memory. This strategy allows virtually unlimited growth of a given vector; it is quite efficiently tuned, but it remains an expensive operation. Performances can be greatly improved if one knows in advance (and even approximatively) the total number of objects that need to be stored in the vector, so that the right amount of memory is allocated from the start, and no further reallocation is required. This function does just that: it tells std::vector how many elements it will (or might) contain at some point, so that the vector can already allocate enough memory to store them contiguously. Later, if you have reserved way too much memory, you can always ask the vector to free the surplus by calling std::vector::shrink_to_fit(), which will result in an additional reallocation but will free some unused memory.

Type conversion, and casting

The rules for converting a vector of a type T into a vector of another type U follow the rules for converting T itself into U. If T is implicitly/explicitly convertible to U, then it is always possible to implicitly/explicitly convert a vec<1,T> into vec<1,U>. For example here with a conversion from vec1f to vec1i:

vec1f v1 = {1.5, -2.2, 100.0};
vec1i v2 = v1; // this works

There is one notable exception to this rule, which is for vectors of type bool. In C++, bool can be implicitly converted to (and from) any other arithmetic type (such as int or float). While implicit conversion is very convenient in most cases, in the case of bool the risk of unwanted narrowing conversion (where data is lost) is much greater, while the actual use cases for implicit conversion are rarer; bool indeed carries a very different semantic compared to the other arithmetic types. For this reason, in vif it was decided to disable implicit conversion to and from bool. If needed, the conversion is still possible at no extra cost by using an explicit cast:

vec1f v1 = {1.5, -2.2, 100.0};
vec1b v2 = v1; // does *not* work! compiler error
vec1b v2 = vec1b{v1}; // this works

Operator overloading

When dealing with std::vector, the only thing you can do to operate on all the elements of an std::vector is to iterate over these elements explicitly, either using a C++11 range-based loop, or using indices:

// Goal: multiply all elements by two.
std::vector<float> v = {1,2,3,4};

// Either using a range-based loop,
for (float& x : v) {
 x *= 2;
}

// ... or an index-based loop.
for (std::size_t i = 0; i < v.size(); ++i) {
 v[i] *= 2;
}

While this is fairly readable (especially the first version), it is still not very concise and expressive. For vif vectors, we have overloaded the usual mathematical operators to make it possible to write the above code in a much simpler way:

// Using vif vector.
vec1f v = {1,2,3,4};
v *= 2;

Not only this, but we can also perform operations on a pair of vectors:

// Goal: sum the content of the two vectors.
vec1f x = {1,2,3,4}, y = {4,3,2,1};
vec1f z = x + y;
// z: {5,5,5,5}

Almost all the mathematical and logical operators are overloaded. Therefore, as a rule of thumb, if you can do an operation with a type T, you can do it with vec<1,T> as well. The one notable exception are bitwise operators: |, &, and ^. The reason is twofold: first, these are not so commonly used in data analysis, and second, the ^ operator can be mistakenly interpreted as the exponentiation operator, that some other languages possess (if you need to do exponentiation, use pow()).

Note

In Python+NumPy and some C++ libraries (like xtensor [https://xtensor.readthedocs.io/en/latest/]), it is possible to mix vectors with different numbers of dimensions in a given operation, if some conditions are satisfied. For example, this allows multiplying the same 1D vector to each row or column of a 2D vector without having to write an explicit loop. This mechanism is called broadcasting. It is not implemented in vif, and will likely never be. Indeed, it is perceived that the benefits are not worth the costs, both in terms of making the vif codebase more complex, but also in introducing more complex rules for the user of the library. Therefore, in vif, one can only do arithmetics on vectors which have the exact same dimensions. If you require an operation similar to what broadcasting provides, you can always write the loop explicitly.

 Indexing

Indexing

Flat and multidimensional indices

The std::vector, which is used to implement vif vectors, is a purely linear container: one can access its elements using v[i], with i ranging from 0 up to std::vector::size()-1 (included). In C++, all indexing is zero-based: the first value has an index of zero (contrary to R, or Fortran).

One can do exactly the same thing on a vif vector. In this context, i is called a “flat” index, since it conveys no particular structure about the data. The vif vectors go beyond this, and also allow N-dimensional indexing, that is, using the combination of multiple indices to identify one element. This is particularly useful to work on images, which can be seen as 2-dimensional objects where each pixel is identified by its coordinates x and y. In this context, the pair x,y is called a “multidimensional” index.

Since regular vectors use the syntax v[i] to access 1-dimensional data, the natural syntax for 2-dimensional indexing would be img[x,y]. This syntax is valid C++ code, but unfortunately will not do what you expect… This will call the dreaded comma operator, which evaluates both elements x and y and returns the last one, i.e., y. So this code actually means img[y]. If you ever make this mistake, most compilers should emit a warning, since in this context x is a useless statement. So watch out! Unfortunately, there is no sane way around it. The only valid syntax is therefore img(x,y).

Below is an example of manipulation of a 2D matrix:

// Create a simple matrix.
vec2f m = {{1,2,3}, {4,5,6}, {7,8,9}};

// Index ordering is similar to C arrays: the last index is contiguous
// in memory. Note that this is *opposite* to the IDL convention.
m(0,0); // 1
m(0,1); // 2
m(1,0); // 4

// It is also possible to access elements as they are laid out in memory,
// using square brackets and "flat" indices.
m[0]; // 1
m[1]; // 2
m[3]; // 4

// ... but doing so with parenthesis will generate a compiler error:
m(0); // error: wrong number of indices for this vector

The elements of a vector can therefore be accessed in two ways: either using a flat index (and square brackets), or using the appropriate multidimensional index (and parentheses). As illustrated above, when using the multidimensional index, you must provide as many indices as the number of dimensions in the vector, no more, no less.

Indexing a vector can only be done with integers. Indexing with unsigned integers is faster, because it removes the need to check if the index is negative, and it should therefore be preferred whenever possible. Negative indices are allowed, and they are interpreted as reverse indices, that is, -1 refers to the last element of the vector, -2 to the one before the last, etc.

Bounds checking, and safe indexing

All the indexing methods described above perform bound checks before accessing each element. In other words, the vector class makes sure that each index is smaller than either the total size of the vector (for flat indices) or the length of its corresponding dimension (for multidimensional indices). If this condition is not satisfied, an assertion is raised explaining the problem, with a backtrace, and the program is stopped immediately to prevent memory corruption.

vec1f v(10):
v[20] = 3.1415;

When executed, the code above produces:

error: operator[]: index out of bounds (20 vs. 10)

backtrace:
 - vif_main(int, char**)
 at /home/cschreib/test.cpp:5

This bound checking has a small but sometimes noticeable impact on performances. In most cases, the added security is definitely worth it. Indeed, accessing a vector with an out-of-bounds index has very unpredictable impacts on the behavior of the program: sometimes it will crash, but most of the time it will not and memory will be silently corrupted. These problems are hard to notice, and can have terrible consequences… Identifying the root of the problem and fixing it may prove even more challenging. This is why these checks are enabled by default, even in “Release” mode.

However, there are cases where bound checking is superfluous, for example if we already know by construction that our indices will always be valid, and no check is required. Sometimes the compiler may realize that and optimize the checks away, but one should not rely on it. If these situations are computation-limited, i.e., a lot of time is spent doing some number crushing for each element, then the performance hit of bound checking will be negligible, and one should not worry about it. On the other hand, if very little work is done per element and most of the time is spent iterating from one index to the next and loading the value in the CPU cache, then bounds checking can take a significant amount of the total time.

For this reason, the vif vector also offers an alternative indexing interface, the so-called “safe” interface. It behaves exactly like the standard indexing interface described above, except that it does not perform bound checking. One can use this interface using v.safe[i] instead of v[i] for flat indexing, or v.safe(x,y) instead of v(x,y) for multidimensional indexing. The safe interface can also be used to create views. This interface is not meant to be used in daily coding, but rather for computationally intensive functions that you write once but use many times. Just be certain to use this interface when you know for sure what you are doing, and you can prove that the index will always be valid. A good strategy is to always use the standard interface and, only when the program runs successfully, switch to the safe interface for the most stable but time-consuming code sections.

Note

One may wonder why the word safe was used instead of unsafe, since indexing without bounds checking is actually an “unsafe” operation. The reason why is that writing v.safe[i] can be understood as: “we are in a context where we know where the index i came from, we’re safe, we can disable bounds checking”. Perhaps another reason is that I would feel somewhat uncomfortable at writing unsafe everywhere in the core functions of the library, which is supposed to only contain safe code…

 Views

Views

Overview

As shown in Operator overloading, instead of accessing each element of a vector individually to perform some operation, we can use operator overloading to act on all the elements of the vector at once: v *= 2. As shown in Indexing, we can also, like with std::vector, modify each element individually using their indices: v[2] *= 2.

The view is a generalization of this concept, allowing you to access and operate on an arbitrary number of elements from an existing vector. Each element of the view is actually a reference to an element in this vector, and performing operations on the elements of the view will modify the elements in the vector. The interface of views is almost indistinguishable from that of vectors, and both can be used interchangeably in almost all cases. Generic codes and functions that work with vectors will therefore also work with views.

Creating a view is simple: instead of indexing a vector with integer values, as in v[2], you would index the vector using another vector containing multiple indices:

// Create a simple vector.
vec1f w = {1,2,3,4,5,6};

// We want to "view" only the second, the third and the fifth
// elements. So we first create a vector containing the
// corresponding indices.
vec1u id = {1,2,4};

// We create the view and multiply all the elements by two.
w[id] *= 2;
// 'w' now contains {1,4,6,4,10,6};

In the example above, the type of the epxression w[id] is vec<1,float*>. Views have the same elements type as the vector they point to, but the template parameter of vec<...> is specified as a pointer (T -> T*) to distinguish them from vectors. The dimensions of the view are set by the vector that was used for indexing (regardless of the dimensions of the pointed vector). For example, if v is a 1D vector and we create a 2D array of indices id, then v[id] will be a 2D view.

Note

Since a view keeps references to the elements of the original vector, the lifetime of the view must not exceed that of the original vector. Else, it will contain dangling references, pointers to unused memory, and this should be avoided at all cost. For this reason, views are not meant to be stored into named variables, but should only be used in temporary expressions as above. This point is discussed also in Known issues, problems, and limitations. The only notable exception to this rule is when passing views to functions (see Guidelines for writing generic functions).

 Known issues, problems, and limitations

Known issues, problems, and limitations

This section describes issues and limitations in vif. Some of these are design issues which should be solved by me, the author of the library, but which I actually cannot solve, or haven’t found the time to solve yet. Some are not issues but features, namely, conscious choices that were made when designing the library, and that will thus never be “solved”.

In any case, the aspects listed in this page may require you, the user, to pay special attention to some corner cases, and you should therefore make sure you are familiar with them.

Dangling views

The problem 1.

A “dangling” reference is a invalid reference that points to an object that no longer exists. Creating such dangling references is a common programming mistake not specific to vif, which compilers are fortunately well equipped to detect:

int& foo() {
 int i = 0;
 return i; // warning: reference to local variable ‘i’ returned
}

vif views suffer from the same problem: a dangling view can be created that points to a vector that no longer exists. Unfortunately, compilers are not aware of it:

vec<1,int*> foo() {
 vec<1,int> v = {0, 1, 2, 3};
 return v[_];
}

This code will unfortunately compile without warning, and there is no (efficient) programmatic way to identify it at run time. Calling foo() will therefore not throw any immediate error, but create an “undefined behavior”; it may do anything, and that’s very bad.

The case above can be spotted by looking carefully at the function itself: 1) the function returns a view, 2) this view points to a vector that is created in the function, 3) therefore it’s a dangling view. However there are more subtle cases where the issue is not as obvious…

The problem 2.

One such case where dangling views are hard to spot is when returning a view from a lambda, rather than from a function with a specified return type. In this case, the return type is inferred from the returned expression, and this causes some surprising results. To avoid this, C++ has some special rules for references:

auto foo = []() {
 int i = 0;
 return i;
}

This lambda actually returns a copy of i, to avoid silently creating a dangling reference. Again, unfortunately this special behavior does not apply to vif views:

auto foo = []() {
 vec1i v = {0, 1, 2, 3};
 return v[_];
}

This lambda will return a dangling view, and because it would not do that for normal types and references like int and int&, it is not obvious to spot.

The solution.

If you are a seasoned C++ programmer, you know how to avoid dangling references within the current C++ language rules. Use the same caution with views, and you will avoid most instances of “Problem 1” (as described above) without relying on the compiler to throw warnings at you.

To solve “Problem 2”, take extra precautions whenever you write a lambda function (or a function with auto return type in C++14) to ensure you are not accidentally returning a view. If you do not trust yourself to do this, then make sure you always specify the expected return type of your lambda functions:

auto foo = []() -> vec1i {
 vec1u v = {0, 1, 2, 3};
 return v[_];
}

Note that smart people are currently thinking of adding new C++ rules that will allow me (and other library authors who experience similar problems) to modify the view class such that it will benefit from all the good magic that C++ currently applies to references. This will fix “Problem 2”, and some cases of “Problem 1”. In the mean time, just be careful!

Invalid views

The problem.

With std::vector<T>, any operation that modifies the size of the vector invalidates all the iterators that point to this vector:

std::vector<int> v;
auto b = v.begin();

v.resize(10);
// b is now invalid!

The same is true for views: if a view points to a vector and this vector is later resized or re-assigned, the view becomes invalid and must not be used any more.

vec1u vec = {1,2,3,4};
vec<1,int*> view = vec[_];

v = {1,2,3,4,5,6};
// the view is now invalid!

The reason why is that the view stores pointers to the values in vec, not indices. These pointers may become invalid themselves if the values of vec are moved to another spot in the computer’s memory.

The solution.

There is a reason why shortcut types are provided for vectors (vec1i instead of vec<1,int>) and not for views: views are only meant to be temporaries, they should not be saved into named variables like in the above. If you feel it is necessary to do this for performance reasons, simply avoid using views altogether and manipulate indices explicitly, this will be faster.

 Guidelines for writing generic functions

Guidelines for writing generic functions

This section contains more advanced technical details about the implementation of vectors and views in vif. It also includes tips and tricks for writing correct, efficient, and generic functions.

What is a generic function?

A “generic” function can operate on vectors regardless of the precise type of their elements. For example, a function to shuffle the values inside a vector does not care whether these values are integers, strings, or potatoes, it just needs to know how many values there are.

In C++, such generic functions are written using template metaprogramming:

template<typename T>
void foo(const T& v) {
 print(v(1,_)*2.5);
}

vec2f v1 = {{1.0}, {5.0}, {-1.0}}; // float, shape 3x1
foo(v1); // prints {12.5}

vec2i v2 = {{1, 5}, {-1, 1}}; // int, shape 2x2
foo(v2); // prints {-2.5, 2.5}

Note

This example uses the print() function from the vif support library, which simply displays its arguments on the terminal.

 IDL equivalents

IDL equivalents

The interface of vif was designed to facilitate the migration from IDL, an interpreted language that, wile dated, is still commonly used in astronomy. Although IDL as a language suffers from a number of design issues, there is much good in its interface and API that one may wish to emulate in C++. But not all of it.

This page lists common language constructs in IDL and their C++ equivalent with vif. The following table is inspired from the xtensor documentation [https://xtensor.readthedocs.io/en/latest/numpy.html].

Crucial differences to always keep in mind

	C++ statements must end with a semicolon ;. Line breaks are treated as white spaces.

	C++ is a statically typed language: a variable, once created, can never change its type.

	C++ variables must be declared before being used, and are destroyed automatically once the program exits the scope in which the variables were declared.

	C++ is a row-major language, IDL is a column-major language: for the same layout in memory (or on the disk), the dimensions of a vector in C++ are reversed compared to IDL. In particular, an image is accessed as img[x,y] in IDL, and img(y,x) in C++.

	C++ is case-sensitive, so a and A are different objects. Keywords and functions in C++ are always lowercase by convention.

Other notable differences

	C++ does not have a mechanism for finding where a function’s code is based only on its name. If you put the function in a different file (a “header”), you must #include "..." this header explicitly in all other files that use this function.

	C++ has no procedures, but functions are allowed to have no return values.

	vif vectors can be empty, while IDL vectors cannot. It is possible to do operations with an empty vector (which have no cost and do nothing) if all the other vectors involved, if any, are also empty.

	C++ loops are much faster than in IDL, so there is no need to avoid them except to make the code shorter and more readable.

	C++ does not support keywords for functions, only normal arguments. A structure with named member values can be used instead.

	C++ does not have an equivalent for IDL’s common variables (shared between functions), but you can use static to declare variables that survive between different calls to the same function. They just cannot be shared with another function.

Basics

	IDL

	C++ 11 - vif

	; a comment

	// a comment

	
a = 1

s = 'foo'

	
int_t a = 1;

std::string s = "foo";

	
v1 = 1 & v2 = 'bar'

	
int_t v1 = 1; std::string v2 = "bar";

	
v = 1 + $

 2 + 3

	
int_t v = 1 +

 2 + 3;

	
a = 5

print, 'a=', a

	
int_t a = 5;

print("a=", a);

	print, a, format='(F5.3)'

	No equivalent with print(),
use std::cout or other formatting library.

	stop

	No equivalent. C++ programs either run or
crash, but they cannot be stopped and resumed.

	r = execute('a = b')

	No equivalent.

	
a = 1

delvar, a

; 'a' no longer exist

	
{

 int_t a = 1;

}

// 'a' no longer exist

Control flow

	IDL

	C++ 11 - vif

	
if x lt y then begin

 ; ...

endif else begin

 ; ...

endelse

	
if (x < y) {

 // ...

} else {

 // ...

}

	
for i=0, n-1 do begin

 ; ...

 break

 ; ...

 continue

 ; ...

endfor

	
for (uint_t i : range(n)) {

 // ...

 break;

 // ...

 continue;

 // ...

}

	
array = ['foo','bar','blob']

foreach val, array do begin

 ; ...

endforeach

	
vec1s array = {"foo","bar","blob"};

for (std::string val : array) {

 // ...

}

	
while a gt b do begin

 ; ...

endfor

	
while (a > b) {

 // ...

}

	
repeat begin

 ; ...

endrep until a gt b

	
do {

 // ...

} while (a > b);

	
switch i of

1: print, 'one'

2: print, 'two'

3: print, 'three'

4: begin

 print, 'four'

 break

 end

else: print, 'other'

endswitch

	
switch (i) {

case 1: print("one");

case 2: print("two");

case 3: print("three");

case 4:

 print("four");

 break;

default: print("other");

}

Note: only works with integers, no strings.

	
case i of

 ; ...

endcase

	
No direct equivalent. Use switch() and

be sure to call break; at the end of

each case.

Creating, accessing, modifying vectors

	IDL

	C++ 11 - vif

	
v = fltarr(10)

v = fltarr(20)

	
vec1f v(10);

v.resize(20);

	
v = intarr(5)

d = double(v)

	
vec1i v(10);

vec1d d = v;

	
v = intarr(5)

v = double(v)

	No equivalent. Types in C++ are static,
cannot change int to double.

	
v = intarr(6)

d = reform(v, 3, 2)

	
vec1i v(6);

vec2i d = reform(v, 2, 3);

	
v = intarr(2, 3)

v = reform(v, 3, 2)

	
vec2i v(3, 2);

v = reform(v, 2, 3);

	
v = intarr(6)

v = reform(v, 3, 2)

	No equivalent. The number of dimensions of a
vector is part of its type, and cannot change.

	
v = [1,2,5,7]

v = [1,2,3]

	
vec1i v = {1,2,5,7};

v = {1,2,3};

	n_elements(v)

	v.size();

	v = dindgen(5)

	vec1d v = dindgen(5);

	
v = indgen(2,3)

v[0] = 1

v[0,2] = 2

v[0,*] = [2,5,6]

v[0,*:1] = [5,6]

v[0,1:*] = [5,6]

v[0,1:2] = [5,6]

	
vec2i v = indgen(3,2);

v[0] = 1;

v(2,0) = 2;

v(_,0) = {2,5,6};

v(_-1,0) = {5,6};

v(1-_,0) = {5,6};

v(1-_-2,0) = {5,6};

	
v = intarr(5)

w = intarr(5)

id = [1,3,4]

v[id] = 1

v[id] = [-1,0,1]

w[id] = v[id]

	
vec1i v(5);

vec1i w(5);

vec1u id = {1,3,4};

v[id] = 1;

v[id] = {-1,0,1};

w[id] = v[id];

	
v = intarr(5)

v[0] = [1,2] (optimized assignment)

	
vec1i v(5);

v[0-_-1] = {1,2}; (need explicit range)

	v = temporary(v) + 1

	v = std::move(v) + 1;

Vector operations

	IDL

	C++ 11 - vif

	
Arithmetic:

x = v + w

x = v - w

x = v * w

x = v / w

x = v ^ w

x = v mod w

x = v mod w

	

x = v + w;

x = v - w;

x = v * w;

x = v / w;

x = pow(v, w);

x = v % w; (for integers)

x = fmod(v, w); (for floats)

	
Comparison:

x = v gt w

x = v ge w

x = v lt w

x = v le w

x = v && w

x = v || w

x = ~w

x = v > w

x = v < w

	

x = v > w;

x = v >= w;

x = v < w;

x = v <= w;

x = v && w;

x = v || w;

x = !w;

x = max(v, w);

x = min(v, w);

	
Bitwise:

x = v and w

x = v or w

x = v xor w

x = not w

	

x = v & w;

x = v | w;

x = v ^ w;

x = ~w;

	
Matrix:

x = v # w

	

matrix::mat<T> w, v;

x = w * v;

or

vec<2,T> w, v;

x = matrix::wrap(w)*matrix::wrap(v);

	x = v ## w

	No direct equivalent. Do the operation
explicitly with indices in a loop.

Finding values

	IDL

	C++ 11 - vif

	
v = [1,2,3,4,5]

id = where(v gt 3, cnt)

if cnt ne 0 then v[id] = 0

	
vec1f v = {1,2,3,4,5};

vec1u id = where(v > 3);

v[id] = 0;

Note: empty vectors are allowed in vif,

so the check for cnt is not needed.

 Introduction

Introduction

Here we describe the set of helper functions that are part of the vif support library. These functions are not essential to the use of the library, in that the vector and view classes can be used on their own, but they are definitely useful. The functions in the support library are arranged inside modular components, which one may choose to use or not. This is the first repository in which one should look for existing, extensively tested functions, which are written to be as generic and efficient as possible.

In this documentation, all these functions are sorted into categories to help you discover new functions and algorithm. Alternatively, if you know the name of a function and would like to read its documentation, you may use the search feature.

In all the following sections, each function is presented and described separately, with its multiple overloads (if any) or “sibling” functions which share a similar role. Usage examples are also provided.

The signature of each function is given in a simplified form, both for conciseness and readability. In particular, we do not display the various template meta-programming tricks used to build the function’s interface (std::enable_if<>), only the basic type of the arguments. The documention should therefore make it clear what the function’s interface is, and specify what type of arguments are allowed and rejected (i.e., are views allowed? are non-arithmetic vector types rejected?). In that, we roughly follow the conventions of cppreference.com [http://en.cppreference.com/w/].

Interface conventions

To preserve consistency and help users guess the correct name or behavior of a function without having to look at the documentation all the time, there are a few interface conventions that all functions and types in vif should adhere to. Not all of these conventions are strictly enforced, and exceptions are allowed when there is a good justification.

	Case. All names must use lower case letters, with words separated by underscores _. For example to_string() is good, but not ToString() or TO_STRING(). Capital letters are reserved for macros only. This rule will be strictly enforced.

	Language. All names must be written in US English. This rule will be strictly enforced.

	Spelling. Whenever reasonable, words should not be abbreviated or truncated. Acronyms should be used sparingly. For example to_string() is good, but not to_str(). Counter example: sexagesimal_to_degrees() is long to type and one has to remember it is degrees and not degree; this could be reasonably abbreviated to sex_to_deg(). But sex2deg() should be avoided.

	Actions vs. tests. Functions performing an “action” (to modify or create things) should include the verb of that action as the first word. For example make_mask(), mask_circular_area(), or begin_calculation(). Functions performing “tests” (by returning a bool) must start with the testing verb conjugated to the 3rd person. For example is_finite() or begins_with_prefix(), and not finite() or begin_with_prefix(), which could both indicate an “action” function instead. The counter example here is vec::empty(), which is a test that should have been spelled vec::is_empty(). Unfortunately the spelling empty() is used in the C++ standard library for all the containers, and therefore we choose to follow this spelling since most C++ programmers will be expecting it.

	Classes vs. functions. The naming convention is the same for classes, structs, or functions. Class names are not required to start with C (as in CObject), in fact this style is discouraged.

	Class vs. struct. Whenever possible and reasonable, use a struct over a class. The underlying semantic is: keep member values public for easy inspection by the user, make it clear what their purpose is and if/how/when they should be modified, and avoid excessive abstraction (no getters/setters). This may not apply to complex classes, or classes which must handle an insecure resource (like a raw pointer from a C library), in which case a class semantic (with private interface, etc.) is more adequate.

	Member values. Member values of a class or struct should follow the same naming conventions as functions. If part of the private interface of a class, they may end with an underscore to highlight that they are not part of the public interface (for example: cached_).

	Free functions vs. member functions. There is no definite convention, but favor free functions for implementing elaborate algorithms and data processing that use this class/struct, and prefer member functions for simple modifications or queries of the state of that class/struct.

	Variables and function arguments. There is no convention for the names of local variables, although lower case should usually be preferred.

	Namespaces. All functions and classes must reside in the vif namespace. Nested namespaces are allowed and encouraged.

 Generic functions

Generic functions

The vector and view classes are useful on their own. However, there are a number of tasks that one may needs to do quite often, like generating a sequence of indices, or sorting a vector, which would be tedious to rewrite each time they are needed. For this reason, the vif support library comes with a large set of utility functions to traverse, sort, rearrange, and select data inside vectors. In this section we list these various functions and describe the corresponding algorithms.

The support library introduces a global constant called npos. This is an unsigned integer whose value is the largest possible integer that the uint_t type can hold. It is meant to be used as an error value, or the value to return if no valid integer value would make sense. It is very similar in concept to the std::string::npos provided by the C++ standard library. In particular, it is worth noting that converting npos to a signed integer produces the value -1.

We now describe the functions provided by this module, sorted by categories.

Categories

	Range-based iteration
	range

	Index manipulation
	mult_ids

	flat_id

	increment_index_list

	Integer sequences
	indgen

	Rearranging elements and dimensions
	flatten

	reform

	reverse

	shift, inplace_shift

	transpose

	replicate

	sort, inplace_sort

	is_sorted

	append, prepend

	remove, inplace_remove

	Finding elements
	where

	where_first, where_last

	complement

	match

	set_intersection, set_intersection_sorted, set_union, set_union_sorted

	unique_ids, unique_ids_sorted, unique_values, unique_values_sorted

	is_any_of

	bounds, lower_bound, upper_bound

	equal_range

	astar_find

	Error checking
	vif_check

 Range-based iteration

Range-based iteration

Defined in header <vif/core/range.hpp>.

range

template<std::size_t D, typename T>
/*...*/ range(const vec<D,T>& v); // [1]

/*...*/ range(uint_t n); // [2]

/*...*/ range(uint_t i0, uint_t n); // [3]

This function returns a C++ range, that is, an object that can be used inside the C++ range-based for loop. This range will generate integer values starting from 0 (in [1], [2]) or i0 (in [3]) to v.size() (in [1]) or n (in [2], [3]), that last value being excluded from the range. This nice way of writing an integer for loop actually runs as fast as (if not faster than) the classical way, and is less error prone.

The return value is a proxy class that holds the starting and ending point of the range, and offers begin() and end() function for iteration. Its type is of little importance.

Example:

vec1i v = {4,5,6,8};

// First version
for (uint_t i : range(v)) { // [1]
 // 'i' goes from 0 to 3
 v[i] = ...;
}

// Note that the loop above generates
// *indices* inside the vector, while:
for (int i : v) { /* ... */ }
// ... generates *values* from the vector.

// Second version
for (uint_t i : range(3)) { // [2]
 // 'i' goes from 0 to 2
 v[i] = ...;
}

// Third version
for (uint_t i : range(1,3)) { // [3]
 // 'i' goes from 1 to 3
 v[i] = ...;
}

 Index manipulation

Index manipulation

Defined in header <vif/utility/generic.hpp>.

mult_ids

template<std::size_t D>
vec1u mult_ids(const std::array<uint_t,D>& dims, uint_t i); // [1]

template<std::size_t D>
vec2u mult_ids(const std::array<uint_t,D>& dims, vec1u i); // [2]

template<std::size_t D, typename T>
vec1u mult_ids(const vec<D,T>& v, uint_t i); // [3]

template<std::size_t D, typename T>
vec2u mult_ids(const vec<D,T>& v, vec1u i); // [4]

This function converts a “flat” index i into an array of multidimensional indices, following the provided dimensions dims ([1] and [2]) or the provided vector v ([3] and [4]). The flat_id function does the inverse job.

[2] and [4] are the vectorized version of [1] and [3], respectively. The return value is a 2D vector of indices: the first dimension contains as many elements as dims ([2]) or the dimensions of v ([4]), and the second dimension contains as many elements as the provided index vector i.

Example:

vec2i v(2,3);
mult_ids(v,0); // {0,0}
mult_ids(v,1); // {0,1}
mult_ids(v,2); // {0,3}
mult_ids(v,3); // {1,0}
v[3] == v(1,0); // true

flat_id

template<std::size_t D, typename ... Args>
uint_t flat_id(const std::array<uint_t,D>& dims, Args&& ... args); // [1]

template<std::size_t D, typename TI>
uint_t flat_id(const std::array<uint_t,D>& dims, const vec<1,TI>& ids); // [2]

template<std::size_t D, typename T, typename ... Args>
uint_t flat_id(const vec<D,T>& v, Args&& ... args); // [3]

template<std::size_t D, typename T, typename TI>
uint_t flat_id(const vec<D,T>& v, const vec<1,TI>& ids); // [4]

This function converts a set of multidimensional indices into a “flat” index, following the provided dimensions dims ([1] and [2]) or the provided vector v ([3] and [4]). The mult_ids function does the inverse job.

In [1] and [3], the multidimensional indices are provided as separate arguments to the function. In [2] and [4] they are grouped inside an index vector.

Example:

vec2i v(2,3);
flat_id(v,0,0); // 0
flat_id(v,0,1); // 1
flat_id(v,0,2); // 2
flat_id(v,1,0); // 3
v(1,0) == v[3]; // true

increment_index_list

void increment_index_list(vec1u& ids, const uint_t& n); // [1]

void increment_index_list(vec1u& ids, const vec1u& n); // [2]

These functions perform one increment on the set of multidimensional indices ids, following the order in memory (i.e., last dimension is incremented first). In [1], each dimension has the same size n, while in [2] the dimensions may be different and are provided as a vector n. These functions allow the full traversal of the multidimensional space in a single loop, and are typically used to iterate on a multidimensional data set when the number of dimensions is either too large or unknown at compile time.

If called on the last allowed index, the function will set ids to zero, hence come back to the first index.

Example:

// Say we got some multidimensional data from a file
vec1d data;
vec1u dims = /* read from a file */;

uint_t nelem = 1;
for (uint_t d : dims) nelem *= d;

data.resize(nelem);

// Initialize the index vector to zero (first index)
vec1u ids(dims.size());

// Iterate in one single loop
for (uint_t i : range(nelem)) {
 // data[i] is the element at index (ids[0],ids[1],...)

 // Increment using [2]
 increment_index_list(ids, dims);
}

 Integer sequences

Integer sequences

Defined in header <vif/utility/generic.hpp>.

indgen

template<typename T = uint_t, typename ... Dims>
vec</*...*/,T> indgen(Dims&& ... ds);

This functions will create a new vector with values starting at 0 and increment linearly by steps of 1 until the end of the vector. Internally, the values are generated with the standard function std::iota`. The number of dimensions of the resulting vector depends on the types Args of the arguments:

	Each argument of type uint_t increases the number of dimensions by one.

	Each argument of type std::array<uint_t,D> increases the number of dimensions by D.

The type of the values in the resulting vector is determined by the template parameter T, which defaults to uint_t if none is provided.

Example:

vec1u v = indgen(5); // {0,1,2,3,4}
vec2u w = indgen(3,2); // {{0,1}, {2,3}, {4,5}}

 Rearranging elements and dimensions

Rearranging elements and dimensions

Defined in header <vif/utility/generic.hpp>.

flatten

template<std::size_t Dim, typename Type>
vec<1,Type> flatten(const vec<Dim,Type>& v); // [1]

template<std::size_t Dim, typename Type>
vec<1,Type> flatten(vec<Dim,Type>&& v); // [2]

template<typename T>
T flatten(T&& v); // [3]

This function transforms a multidimensional vector into a 1D vector ([1] and [2]; [3] is a no-op overload for scalars). The content in memory remains exactly the same, so the operation is fast. In particular, if the argument of this function is a temporary ([2]), this function is extremely cheap as it produces no copy. The reform() function does the inverse job, and more.

The provided argument v is unchanged ([1] and [3]).

Example:

vec2i v = {{1,2,3}, {4,5,6}};
vec1i w = flatten(v); // {1,2,3,4,5,6}

reform

template<std::size_t Dim, typename Type, typename ... Args>
vec</*...*/,Type> reform(const vec<Dim,Type>& v, Args&& ... args); // [1]

template<std::size_t Dim, typename Type, typename ... Args>
vec</*...*/,Type> reform(vec<Dim,Type>&& v, Args&& ... args); // [2]

This function transforms a vector into another vector, simply changing its dimensions. The content in memory remains exactly the same, so the operation is fast. In particular, if the argument of this function is a temporary ([2]), this function is extremely cheap as it produces no copy. However, the new dimensions have to sum up to the same number of elements as that in the provided vector. The flatten() function is a special case of reform() where all dimension are reformed into one, resulting in a 1D vector.

The provided argument v is unchanged in [1], but not [2]. The number of dimensions of the resulting vector depends on the types Args of the arguments:

	The starting dimension is 0.

	Each argument of type uint_t increases the final dimension by one.

	Each argument of type std::array<uint_t,D> increases the final dimension by D.

Example:

vec1i v = {1,2,3,4,5,6};
vec2i w = reform(v, 2, 3); // {{1,2,3}, {4,5,6}}

reverse

template<typename Type>
vec<1,Type> reverse(vec<1,Type> v);

This function will return a copy of the provided vector, in which the order of all the elements is reversed. The original vector is unchanged. Only works with 1D vectors or views.

Example:

vec1i v = {1,2,3,4,5,6};
vec1i w = reverse(v); // {6,5,4,3,2,1}

shift, inplace_shift

template<typename Type>
vec<1,Type> shift(vec<1,Type> v, int_t n); // [1]

template<typename Type>
void inplace_shift(vec<1,Type>& v, int_t n); // [2]

shift() ([1]) returns a copy of the provided vector v where the elements are moved by circular shift of n elements. If n is positive, elements that would go beyond the bounds of the vector after the shift are moved to the beginning, with their order preserved. If n is negative, elements that would go beyond the beginning of the vector are placed at the end, with their order preserved. This function calls std::rotate(). The original vector is unchanged. Only works with 1D vectors or views.

inplace_shift() ([2]) performs the same operation as shift() but operates directly on the provided vector, which is therefore modified, but no copy is made so the operation is faster.

Example:

vec1i v = {1,2,3,4,5};

// [1]
vec1i sr1 = shift(v, 2); // {4,5,1,2,3}
vec1i sr2 = shift(v, -2); // {3,4,5,1,2}

// [2]
inplace_shift(v, 2);
// v = {4,5,1,2,3}

transpose

template<typename Type>
vec<2,Type> transpose(const vec<2,Type>& v);

This function will transpose the provided 2D vector so that its dimensions are swapped. In other words, v(i,j) becomes v(j,i). This is a matrix transposition. The original vector is unchanged.

Example:

vec2i v = {{1,2}, {3,4}, {5,6}};
vec2i w = transpose(v); // {{1,3,5}, {2,4,6}}
// now w(i,j) == v(j,i)

replicate

template<typename Type, typename ... Args>
vec</*...*/, meta::vtype_t<Type>> replicate(const Type& t, Args&& ... args); // [1]

template<std::size_t Dim, typename Type, typename ... Args>
vec</*...*/, meta::rtype_t<Type>> replicate(const vec<Dim,Type>& t, Args&& ... args); // [2]

This function will take the provided scalar ([1]) or vector ([2]), and replicate it multiple times according to the provided additional parameters, to generate additional dimensions.

The number of dimensions of the resulting vector depends on the types Args of the arguments:

	The starting dimension is 0 ([1]) or Dim ([2]).

	Each argument of type uint_t increases the final dimension by one.

	Each argument of type std::array<uint_t,D> increases the final dimension by D.

Example:

// [1]
vec1i v = replicate(2, 5);
// v = {2,2,2,2,2}, or 5 times 2

vec2i w = replicate(2, 3, 2);
// w = {{2,2},{2,2},{2,2}}, or 3 x 2 times 2

vec3u x = replicate(1u, w.dims, 5);
// equivalent to:
// x = replicate(1u, 3, 2, 5);

// [2]
vec2i z = replicate(vec1i{1,2}, 3);
// z = {{1,2},{1,2},{1,2}}, or 3 times {1,2}

// Note that it is not possible to just use a plain initializer list
// since its type cannot be deduced with current C++ rules
vec2i z = replicate({1,2}, 3); // error

sort, inplace_sort

template<std::size_t Dim, typename Type>
vec1u sort(const vec<Dim,Type>& v); // [1]

template<std::size_t Dim, typename Type, typename F>
vec1u sort(const vec<Dim,Type>& v, F&& comp); // [2]

template<std::size_t Dim, typename Type>
void inplace_sort(vec<Dim,Type>& v); // [3]

template<std::size_t Dim, typename Type, typename F>
void inplace_sort(vec<Dim,Type>& v, F&& comp); // [4]

sort() returns a vector of indices for the provided vector v, ordered such that the pointed values are sorted by increasing value ([1]) or following the provided comparison function ([2]). The number of returned indices is the same as the number of values in v. The original vector is not modified. If two elements of v compare equal, their respective order in the vector will be unchanged (this function uses std::stable_sort()).

inplace_sort() directly modifies the order of the values inside the vector, and returns nothing. It is fastest, but less powerful.

In [2] and [4], the comparator function comp(x,y) must return true if x should be placed after y after the sort.

Warning

The comparison function comp must provide a strict total ordering, otherwise the behavior of the function is undefined. See cppreference.com [http://en.cppreference.com/w/cpp/concept/Compare] for more information. In brief, this means that any value can only be “equal”, “lesser”, or “greater” than any other value. With a comparison function returning simply x < y, this requirement is not met for float and double because of the special value “not-a-number”, NaN, which is neither. [1] and [3] use the default comparator for vif vectors, in which this issue is solved by considering NaN as “greater than” positive infinity. NaN values will thus be placed at the end of a sorted vector. To take advantage of this implementation, use vec<Dim,Type>::comparator_less{}(x,y) and vec<Dim,Type>::comparator_greater{}(x,y) instead of x < y and x > y inside your custom comparison functions. This is unnecessary for integer types and strings.

 Finding elements

Finding elements

Defined in header <vif/utility/generic.hpp>.

where

template<std::size_t Dim, typename Type>
vec1u where(const vec<Dim,Type>& v);

This function will scan the bool vector (or view) provided in argument, will store the “flat” indices of all the elements which are true, and will return all these indices in a vector. This is a very useful tool to filter and selectively modify vectors, and probably one of the most used function of the whole library.

Example:

vec1i v = {4,8,6,7,5,2,3,9,0};

// We want to select all the elements which are greater than 3.
// We use where() to get their indices:
vec1u id = where(v > 3); // {0,1,2,3,4,7}

// Now we can check:
v[id]; // {4,8,6,7,5,9}, good!

// The argument of where() can be quite complex:
id = where(v < 3 || (v > 3 && v % 6 < 2)); // now guess

// It can also involve multiple vectors, as long as they have
// the same dimensions.
vec1i w = {9,8,6,1,-2,0,8,5,1};
id = where(v > w || (v + w) % 5 == 0);

// The returned indices are then valid for both v and w.
v[id]; // {8,6,7,5,2,9}
w[id]; // {8,6,1,-2,0,5}

Note that, when called on a view, where() will return indices inside the view itself, and not inside the viewed vector:

Example:

vec1i v = {4,8,6,7,5,2,3,9,0};

// Select all the elements greater than 3.
vec1u id1 = where(v > 3);

for (uint_t i : range(1)) {
 // We want to apply another selection on top of the first one.
 // Say we now want only those elements which are even (when i=0)
 // or odd (when i=1):
 vec1u id2 = where(v[id1] % 2 == i);

 // Here 'id2' points inside 'v[id1]', not 'v'!
 // To access the correspond values in 'v', one must write:
 v[id1[id2]] = /* ... */;

 // This is dangerous, because 'v[id2]' is perfectly valid,
 // yet makes absolutely no sense.
}

In general, such situations can be avoided by only calling where() at the last possible moment, as shown in the example below.

Example:

vec1b base = v > 3; // only a 'bool' vector for now

for (uint_t i : range(1)) {
 vec1u id = where(base && v % 2 == i);

 // Now we can access 'v' directly:
 v[id] = /* ... */;
}

This is often more readable and less error prone, however it may also be less efficient, particularly if the first where() reduced significantly the number of elements to work with (e.g., if v contained millions of elements, and only a few are greater than 3). A typical case where these situations arise is when binning multidimensional data, for example to build a 2D histogram. Then, a much more efficient approach is to use the histogram() function and its siblings. Despite the name, these powerful function can be used for purposes other than histograms.

where_first, where_last

template<std::size_t Dim, typename Type>
uint_t where_first(const vec<Dim,Type>& v); // [1]

template<std::size_t Dim, typename Type>
uint_t where_last(const vec<Dim,Type>& v); // [2]

These functions will scan the bool vector (or view) provided in argument, and return the “flat” index of the first ([1]) or last ([2]) element which is true, or npos if all are false.

When used with views, the same caution applies as for where(): the returned index points inside the view itself, not inside the viewed vector.

Example:

vec1i v = {4,8,6,7,5,2,3,9,0};
// We want to select the first element which is greater than 3
uint_t id;
id = where_first(v > 3); // 0
v[id]; // 4
id = where_last(v > 3); // 7
v[id]; // 9

complement

template<std::size_t Dim, typename Type>
vec1u complement(const vec<Dim,Type>& v, const vec1u& ids);

This function works in parallel with where(). Given a vector v and a set of “flat” indices id, it will return the complementary set of indices inside this vector, i.e., all the indices of v that are not present in id. The values of v are unused, only its dimensions are read.

Example:

vec1i v = {1,5,6,3,7};
vec1u id = where(v > 4); // {1,2,4}
vec1u cid = complement(v, id); // {0,3}

match

template<std::size_t D1, std::size_t D2, typename Type1, typename Type2>
void match(const vec<D1,Type1>& v1, const vec<D2,Type2>& v2, vec1u& id1, vec1u& id2);

This function returns the indices of the elements with equal values in v1 and v2. In practice, it traverses v1 and, for each value in v1, looks for elements in v2 that have the same value. If one is found, the index of the element of v1 is added to id1, and the index of the element of v2 is added to id2. If other matches are found in v2 for this same value, they are ignored, therefore only the first match is returned. Then the function goes on to the next value in v1. The two vectors v1 and v2 need not be the same size.

When used with views, the same caution applies as for where(): the returned indices point inside the views themselves, not inside the viewed vectors.

Example:

vec1i v = {7,6,2,1,6};
vec1i w = {2,6,5,3};
vec1u id1, id2;
match(v, w, id1, id2);
id1; // {1,2,4}
id2; // {1,0,1}
v[id1] == w[id2]; // always true

set_intersection, set_intersection_sorted, set_union, set_union_sorted

template<std::size_t D1, std::size_t D2, typename Type1, typename Type2>
vec<1,/*...*/> set_intersection(vec<D1,Type1> v1, vec<D2,Type2> v2); // [1]

template<std::size_t D1, std::size_t D2, typename Type1, typename Type2>
vec<1,/*...*/> set_intersection_sorted(const vec<D1,Type1>& v1, const vec<D2,Type2>& v2); // [2]

template<std::size_t D1, std::size_t D2, typename Type1, typename Type2>
vec<1,/*...*/> set_union(vec<D1,Type1> v1, vec<D2,Type2> v2); // [3]

template<std::size_t D1, std::size_t D2, typename Type1, typename Type2>
vec<1,/*...*/> set_union_sorted(const vec<D1,Type1>& v1, const vec<D2,Type2>& v2); // [4]

These functions return a 1D vector containing all the values that exist in both ([1], [2]) or either of ([3], [4]) v1 and v2. These values are returned sorted. If a value is found n1 times in v1 and n2 times in v2, [1] and [2] will return this value min(n1,n2) times, while [3] and [4] will return this value max(n1,n2) times. The two vectors do not need to have the same size, and the functions are symmetric: returned values are the same if v1 and v2 are swapped.

The algorithms used internally (std::set_intersection() and std::set_union()) operate on sorted vectors. [1] and [3] will automatically sort the input vectors, so there are no pre-requirement on their ordering. [2] and [4] will assume that the input vectors are already sorted, all will thus be faster.

The type of the returned vector is the common type between v1 and v2, namely, whatever type results of an operation like v1[0]+v2[0].

Example:

vec1i v = {1,2,3,3,3,4,5};
vec1i w = {2,3,3,4,6};

set_insersection(v, w); // {2,3,3,4}
set_union(v, w); // {1,2,3,3,3,4,5,6}

unique_ids, unique_ids_sorted, unique_values, unique_values_sorted

template<std::size_t Dim, typename Type>
vec1u unique_ids(const vec<Dim,Type>& v); // [1]

template<std::size_t Dim, typename Type>
vec1u unique_ids(const vec<Dim,Type>& v, const vec1u& sid); // [2]

template<std::size_t Dim, typename Type>
vec1u unique_ids_sorted(const vec<Dim,Type>& v); // [3]

template<std::size_t Dim, typename Type>
vec<1,meta::rtype_t<Type>> unique_values(const vec<Dim,Type>& v); // [4]

template<std::size_t Dim, typename Type>
vec<1,meta::rtype_t<Type>> unique_values(const vec<Dim,Type>& v, const vec1u& sid); // [5]

template<std::size_t Dim, typename Type>
vec<1,meta::rtype_t<Type>> unique_values_sorted(const vec<Dim,Type>& v); // [6]

These functions will traverse the provided vector v and find all the unique values. Functions [1] to [3] store the indices of these values and return them inside an index vector. If a value is present more than once, the index of the first one will be returned. Functions [4] to [6] directly return the values themselves, rather than indices.

Internally, the algorithm needs to sort v. To optimize execution, several versions of these functions are provided which handle the sorting differently. Functions [1] and [4] will automatically sort the vector, so there is no pre-requirement on v. Functions [2] and [5] takes a second argument id that contains indices that will sort v. In particular, id can be the return value of sort(v). Lastly, functions [3] and [6] assume that v is already sorted, and are thus the fastest of the three.

When used with views, the same caution applies for functions [1] to [3] as for where(): the returned indices point inside the views themselves, not inside the viewed vectors.

Example:

// For an non-sorted vector [1]
vec1i w = {5,6,7,8,6,5,4,1,2,5};
vec1u u = unique_ids(w); // {7,8,6,0,1,2,3}
w[u]; // {1,2,4,5,6,7,8} only unique values

// Providing a sorting vector [2]
vec1u s = sort(w);
vec1u u = unique_ids(w, s); // {7,8,6,0,1,2,3}
w[u]; // {1,2,4,5,6,7,8} only unique values

// For a sorted vector [3]
vec1i v = {1,1,2,5,5,6,9,9,10};
vec1u u = unique_ids_sorted(v); // {0,2,3,5,6,8}
v[u]; // {1,2,5,6,9,10} only unique values

is_any_of

template<typename Type1, std::size_t Dim2, typename Type2>
bool is_any_of(const Type1& v1, const vec<Dim2,Type2>& v2); // [1]

template<std::size_t Dim1, typename Type1, std::size_t Dim2, typename Type2>
vec<Dim1,bool> is_any_of(const vec<Dim1,Type1>& v1, const vec<Dim2,Type2>& v2); // [2]

Function [1] looks inside v2 if there is any value that is equal to v1. If so, it returns true, else it returns false. Function [2] is the vectorized version of [1], and executes this search for each value of v1, then returns a bool vector containing the results.

There are no pre-requirements on v1 or v2.

Example:

vec1i v = {7,4,2,1,6};
vec1i d = {5,6,7};
vec1b b = is_any_of(v, d); // {true, false, false, false, true}

bounds, lower_bound, upper_bound

template<typename T, std::size_t Dim, typename Type>
uint_t lower_bound(const vec<Dim,Type>& v, T x); // [1]

template<typename T, std::size_t Dim, typename Type>
uint_t upper_bound(const vec<Dim,Type>& v, T x); // [2]

template<typename T, std::size_t Dim, typename Type>
std::array<uint_t,2> bounds(const vec<Dim,Type>& v, T x); // [3]

template<typename T, typename U, std::size_t Dim, typename Type>
std::array<uint_t,2> bounds(const vec<Dim,Type>& v, T x1, U x2); // [4]

These functions use a binary search algorithm to locate the element in the input vector v that is equal to or closest to the provided value x, which must be a scalar. The binary search assumes that the elements in the input vector are sorted by increasing value. This algorithm also assumes that, if the input vector contains floating point numbers, none of them is NaN.

lower_bound() ([1]) locates the last element in v that is less or equal to x. If no such element is found, npos is returned.

upper_bound() ([2]) locates the first element in v that is greater than x. If no such element is found, npos is returned.

bounds() ([3]) combines what lower_bound() and upper_bound() do, and returns both indices in an array. The second overload of bounds() ([4]) calls lower_bound() to look for x1, and upper_bound() to look for x2.

Example:

vec1i v = {2,5,9,12,50};
bounds(v, 0); // {npos,0}
bounds(v, 9); // {2,3}
bounds(v, 100); // {4,npos}

equal_range

template<typename T, std::size_t Dim, typename Type>
std::array<uint_t,2> equal_range(const vec<Dim,Type>& v, T x);

This function uses a binary search algorithm to locate all the values in the input vector v that are equal to x. The binary search assumes that the elements in the input vector are sorted by increasing value. This algorithm also assumes that, if the input vector contains floating point numbers, none of them is NaN.

The function returns the first and last indices of the values equal to x. If no such value is found, the two indices will be set to npos.

If v is not sorted, an alternative is to call where(v == x); this should be faster than sorting v and then using equal_range().

Example:

vec1i v = {2,2,5,9,9,9,12,50};
equal_range(v, 9); // {3,5}

// The above is a faster version of:
where(v == 9);

astar_find

bool astar_find(const vec2b& map, uint_t& x, uint_t& y);

This function uses the A* (“A star”) algorithm to look inside a 2D boolean map m and, starting from the position x and y (i.e. m(x,y)), find the closest point that has a value of true. Once this position is found, its indices are stored inside x and y, and the function returns true. If no element inside m is true, then the function returns false.

Example:

// Using 'o' for true and '.' for false, assume we have the following boolean map,
// and that we start at the position indicated by 'S', the closest point whose coordinates
// will be returned by astar_find() is indicated by an 'X'

vec2b m;

// 0123456789 13
// 0
// 1
// 2
// 3 ...ooooo.........
// 4 ...ooooo.........
// 5 ...ooooo.........
// 6 ...ooooo.........
// 7 ...ooooX.........
// 8S...
// 9
//

uint_t x = 13, y = 8;
astar_find(m, x, y);
x; // 7
y; // 7

 Error checking

Error checking

Defined in header <vif/core/error.hpp>.

vif_check

template<typename ... Args>
void vif_check(bool b, Args&& ... args);

This function (in fact a C++ macro) makes error checking easier. When called, it checks the value of b. If b is true, then nothing happens and the values of args are not evaluated. However if b is false, then the current file and line are printed to the standard output, followed by the other arguments of this function, which are supposed to compose an error message explaining what went wrong, and the program is immediately stopped. This function is used everywhere in the vif library to ensure that certain pre-conditions are met before doing a calculation, and it is essential to make the program stop in case something is unexpected rather than letting it run hoping for the best (and often getting the worst).

Since this function is actually implemented by a preprocessor macro, one should not worry about its performance impact beside the cost of evaluating b. Performances will only be affected when something goes wrong and the program is about to stop anyway.

In addition, if the vif library was configured accordingly, this function can print the “backtrace” of the program that lead to the error. This backtrace lists which functions or lines of code the program was executing when the error occured, tracing back the offending line all the way up from the main() function. This can be very useful to identify the source of the problem, but is only available if debugging informations are stored inside the compiled program. Note that this only affects the size of the executable on disk: debugging informations do not alter performances. Lastly, the backtrace may not be sufficient to understand what went wrong, and one may need to use the debugger.

// Suppose 'v' is read from the command line arguments.
vec1i v = /* read from somewhere unsafe */;

// The rest of the code needs at least 3 elements in the
// vector 'v', so we need to check that first.
vif_check(v.size() >= 3, "this algorithm needs at least 3 values in the input vector, "
 "but only ", v.size(), " were found");

// If we get past this point, we can proceed safely to use
// the first three elements
print(v[0]+v[1]+v[3]);

// ... and we can safely disable index checking using the
// 'safe' interface of the vector
print(v.safe[0]+v.safe[1]+v.safe[3]);

 Command line arguments

Command line arguments

Defined in header <vif/utility/argv.hpp>.

read_args

The biggest problem of C++ programs is that, while they are fast to execute, they can take a long time to compile. For this reason, C++ is generally not a productive language in situations where the code has to be written by trial and error, a process that involves frequently changing the behavior or starting point of a program.

There are ways around this issue. One in particular is called data driven programming: the behavior of a program depends on the data that are fed to it. The simplest way to use this paradigm is to control the program through “command line arguments”. The C++ language provides the basic bricks to use command line arguments, but the interface is inherited from C and lacks severely in usability.

For this reason we introduce in vif a single function, read_args(), that uses these bricks to provide a simple and concise interface to implement command line arguments in a program. The first two arguments of the function (argc, argv) must be the arguments of the main() function, in the same order. The following argument must be arg_list(...), inside of which one must list all the variables that can be modified through the command line interface. These variables can be of any type, as long as it is possible to convert a string into a variable of this type.

Usage examples

Let us illustrate this with an example. Assume that we want to build a simple program that will print to the terminal the first n powers of two, with n being specified by the user of the program. Here is how this would be done with read_args():

include <vif.hpp>

// This is the standard entry point of every C++ program.
// The signature of the main function is imposed by the C++ standard
int vif_main(int argc, char* argv[]) {
 // Declare the main parameters of the program, in this case
 // the number of powers of two to display, 'n'.
 uint_t n = 1;

 // Then read command line arguments...
 read_args(argc, argv, arg_list(n));

 // Now we can go on with the program, using 'n' normally
 print(pow(2.0, findgen(n)+1));

 // And quit gracefully
 return 0;
}

By just adding this line

read_args(argc, argv, arg_list(n));

we exposed the variable n to the public: everyone that runs this program can modify the value of n to suit their need. Simple! Assuming the name of the compiled program is show_pow2, then the program is ran the following way:

First try with no parameter.
'n' is not modified, and keeps its default value of 1.
./show_pow2
output:
2

Then we change 'n' to 5.
./show_pow2 n=5
output:
2 4 8 16 32

The advantages of this approach are immediate. Instead of recompiling the whole program just to change n, we exposed it in the program arguments. We then compiled the program once, and changed its behavior without ever recompiling. This can save a lot of time, for example when trying to figure out what is the best value of a parameter in a given problem (i.e., tweaking parameters of an algorithm). And of course, this is most useful when writing tools with configurable options.

Within the arg_list(), one can put as many C++ variables as needed. The function will recognize their name, and when the program is executed it will try to find a command line argument that matches. If it finds one, it tries to convert its value into the type of the variable, and if successful, store this new value inside the variable. In all other cases, the variable is not modified. It is therefore important to give a meaningful default value to each variable!

In the example above, we chose to expose a simple integer. But in fact, the interface can be used to expose any type, provided that there is a way to convert a string into a value of this type. In particular, this is the case for vectors. The values of the vector must be separated by commas, (without any space, unless you put the whole argument inside quotes), and surrounded by brackets [...]. Again, let us illustrate this with an example. We will modify the previous program to allow it to show not only powers of 2, but the powers of multiple, arbitrary numbers. Note: in the following, we will not repeat the whole main() function, just the important bits.

// The number of powers of two to display
uint_t n = 1;
// The powers to display
vec1f p = {2};

// Read command line arguments
read_args(argc, argv, arg_list(n, p));

// Go on with the program
for (float v : p) {
 print(pow(v, findgen(n)+1));
}

The program can now change the powers it displays, for example:

We keep 'n' equal to 5, and we show the powers of 2, 3 and 5.
./show_pow2 n=5 p=[2,3,5]
output:
2 4 8 16 32
3 9 27 81 243
5 25 125 625 3125

It is possible to use spaces inside the [...], but then you must add quotes:
./show_pow2 n=5 p="[2, 3, 5]"

Now, you may think that p is not a very explicit name for this last parameter. It would be clearer if we could call it pow. Unfortunately, pow is already the name of a function in C++, so we cannot give this name to the variable. However, the read_args() interface allows you to manually give a name to any parameter using the name() function. Let us do that and modify the previous example.

// The number of powers of two to display
uint_t n = 1;
// The powers to display, we still call it 'p' in the program
vec1f p = {2};

// Read command line arguments
read_args(argc, argv, arg_list(n, name(p, "pow"));

// Go on with the program
for (float v : p) {
 print(pow(v, findgen(n)+1));
}

Now we will write instead:

./show_pow2 n=5 pow=[2,3,5]
output:
2 4 8 16 32
3 9 27 81 243
5 25 125 625 3125

Flags

Often, command line options are “flags”. These are boolean variables that are false by default, but can be changed to true to enable some specific functionality. For example, setting verbose=1 can be used to tell the program to display information in the terminal about its progress. To simplify usage of these flags, read_args() allows an alternative syntax where specifying verbose without any equal sign in the arguments is equivalent to verbose=1:

./my_program verbose
... is equivalent to:
./my_program verbose=1

There is no shortcut for var=0.

Alternative syntax

In the examples above, command lines arguments are specified as variable=value. This is the tersest available syntax. However, most linux programs tend to use dashes (-) to identify command line arguments; for example -variable=value or --variable=value. To avoid confusing users, read_args() supports both ways of writing command line arguments; dashes can be used but are not mandatory.

 String manipulation

String manipulation

Categories

	String conversions
	to_string, to_string_vector

	format::precision, format::scientific, format::fixed

	from_string

	Basic string operations
	empty

	length

	keep_first, keep_last

	distance

	Split and combine
	split, split_any_of

	cut

	wrap

	collapse

	Formatting
	trim

	to_upper, to_lower

	align_left, align_right, align_center

	Find/replace
	find

	replace

	begins_with, ends_with

	erase_begin, erase_end

	replace_block, replace_blocks

	Regular expressions (regex)
	regex_match

	regex_extract

	regex_replace

	Hash
	hash

 String conversions

String conversions

Defined in header <vif/core/string_conversion.hpp>.

to_string, to_string_vector

template<typename Type>
std::string to_string(const Type& v); // [1]

template<std::size_t Dim, typename Type>
vec<Dim,std::string> to_string_vector(const vec<Dim,Type>& v); // [2]

The function [1] will convert the value v into a string. This value can be of any type, as long as it is convertible to string. In particular, v can be a vector, in which case the output string will contain all the values of the vector, separated by commas, and enclosed inside curly braces: "{a,b,c,d,....}".

Example:

to_string(2); // "2"
to_string(true); // "1"
to_string("foo"); // "foo"
to_string(vec1i{2,5,9}); // "{2, 5, 9}"

The function [2] allows you to convert each value of a vector into a separate string, and store them in a string vector.

to_string(vec1i{2,5,9}); // "{2, 5, 9}"
to_string_vector(vec1i{2,5,9}); // {"2", "5", "9"}

Internally, the argument is converted to a string using the std::ostream operator<<. This means that most types from the standard C++ or external C++ libraries will be convertible to a string out of the box. If you encounter some errors for a particular type, this probably means that the operator<< is missing and you have to write it yourself. Here is how you would do that:

// We want to make this structure printable
struct test {
 std::string name;
 int i, j;
};

// We just need to write this function
std::ostream& operator<< (std::ostream& o, const test& t) {
 o << t.name << ":{i=" << i << " j=" << j << "}";
 return o; // do not forget to always return the std::ostream!
}

// The idea is always to rely on the existence of an operator<<
// function for the types that are contained by your structure
// or class. In our case, 'std::string' and 'int' are already
// conertible to string, This is the standard C++ way of doing
// string conversions, but it can be annoying to use regularly
// because the "<<" are taking a lot of screen space.
// 'to_string()' makes it much more convenient.

// Now we can convert!
test t = {"toto", 5, 12};
std::string s = to_string(t);
s; // "toto:{i=5 j=12}"

format::precision, format::scientific, format::fixed

template<typename Type>
/* ... */ format::scientific(const Type& v); // [1]

template<typename Type>
/* ... */ format::precision(const Type& v, uint_t ndigit); // [2]

template<typename Type>
/* ... */ format::fixed(const Type& v); // [3]

The to_string() and to_string_vector() functions adopt a default format for converting numbers into strings. While integers have a unique and natural string representation, floating point numbers often require a choice regarding the number of significant digits, and whether scientific notation should be used. By default, these functions follow the behavior of std::ostream, which is to only use scientific notation when the number would be “too big” (or “too small”).

Function [1], format::scientific(), will specify that it’s argument v must be formated using the scientific notation.

Example:

double v = 0.15;
to_string(v); // "0.15"
to_string(format::scientific(v)); // "1.500000e-01"

Function [2], format::precision(), will specify that it’s first argument v must be formated using ndigit digits. Normally, “digits” include numbers on either side of the decimal separator, so "3.15", "31.5", and "315" are all three digits. When not in scientific format, trailing zeros after the decimal separator will still be removed, so the total number of digits may still be less than ndigit.

Example:

double v = 0.15;
to_string(v); // "0.15"
to_string(format::precision(v, 8)); // "0.15"

v = 0.123456789123456789;
to_string(v); // "0.123457"
to_string(format::precision(v, 8)); // "0.12345679"

Function [3], format::fixed(), will format the value with a fixed number of digits after the decimal separator. Trailing zeroes will not be removed. This is best used in combination with format::precision, which then specifies how many digits to keep after the decimal separator (digits before the separator do not count).

Example:

double v = 0.15;
to_string(v); // "0.15"
to_string(format::fixed(format::precision(v, 8))); // "0.15000000"

v = 3150.15;
to_string(v); // "3150.15"
to_string(format::fixed(format::precision(v, 8))); // "3150.15000000"

v = 0.123456789123456789;
to_string(v); // "0.123457"
to_string(format::fixed(format::precision(v, 8))); // "0.12345679"

Note that all these functions can be used in other contexts than just to_string() and to_string_vector(), essentially whenever a conversion to string is performed. See for example ascii::write_table().

from_string

template<typename Type>
bool from_string(const std::string& s, const Type& v); // [1]

template<std::size_t D, typename Type>
vec<D,bool> from_string(const vec<D,std::string>& v, vec<D,Type>& v); // [2]

The function [1] tries to convert the string s into a C++ value v and returns true in case of success. If the string cannot be converted into this value, for example if the string contains letters and the value has an arithmetic type, or if the number inside the string is too big to fit inside the C++ value, the function will return false. In this case, the value of v is undefined.

The version [2] will try to convert each value inside the string vector s, and will store the converted values inside the vector v. It will automatically take care or resizing the vector v, so you can pass an empty vector in input. The return value is an array of boolean values, corresponding to the success or failure of conversion for each individual value inside s. If an element of s failed to convert, the corresponding value in v will be undefined.

Example:

float f;
bool b = from_string("3.1415", f);
b; // true
f; // 3.1415

b = from_string("abcdef", f);
b; // false;
f; // ??? could be 3.1415, or NaN, or anything else

vec1f fs;
vec1b bs = from_string({"1", "1.00e5", "abc", "1e128", "2.5"}, fs);
bs; // {true, true, false, false, true}
fs; // {1, 1e5, ???, ???, 2.5}

 Basic string operations

Basic string operations

Defined in header <vif/utility/string.hpp>.

empty

bool empty(const std::string& s); // [1]

template<std::size_t D>
vec<D,bool> empty(const vec<D,std::string>& s); // [2]

The function [1] will return true if the provided string does not contain any character (including spaces), and false otherwise. This is a synonym for s.empty(). The function [2] is the vectorized version of [1].

Example:

vec1s str = {"", "abc", " "};
vec1b b = empty(str);
b; // {true, false, false}
// Not to be confused with the vec::empty() function
str.empty(); // false
str = {""};
str.empty(); // false
str = {};
str.empty(); // true

length

uint_t length(const std::string& s); // [1]

template<std::size_t D>
vec<D,uint_t> length(const vec<D,std::string>& s); // [2]

The function [1] will return the length of the provided string, i.e., the number of character it contains (including spaces). If the string is empty, the function will return zero. The function [2] is the vectorized version of [1].

Example:

vec1s str = {"", "abc", " a b"};
vec1u n = length(str);
n; // {0, 3, 4}

keep_first, keep_last

std::string keep_first(std::string s, uint_t n = 1); // [1]

std::string keep_last(std::string s, uint_t n = 1); // [2]

template<std::size_t D>
vec<D,std::string> keep_first(vec<D,std::string> s, uint_t n = 1); // [3]

template<std::size_t D>
vec<D,std::string> keep_last(vec<D,std::string> s, uint_t n = 1); // [4]

These functions will return the first ([1]) or last ([2]) n characters of the string s and discard the rest. If n is larger than the size of s, the whole string is returned untouched. Functions [3] and [4] are the vectorized versions of [1] and [2], respectively.

Example:

vec1s v = {"p1_m2.txt", "p3_c4.fits", "p1_t8.fits"};
vec1s s = keep_first(v, 2);
s; // {"p1", "p3", "p1"}
s = keep_last(v, 4);
s; // {".txt", "fits", "fits"}

distance

uint_t distance(const std::string& s1, const std::string& s2); // [1]

template<std::size_t D>
vec<D,uint_t> distance(const vec<D,std::string>& s1, const std::string& s2); // [2]

The function [1] computes the lexicographic distance between two strings. The definition of this distance is the following. If the two strings are exactly identical, the distance is zero. Else, each character of the shortest string are compared to the corresponding character at the same position in the other string: if they are different, the distance is increase by one. Finally, the distance is increased by the difference of size between the two strings.

The goal of this function is to identify near matches in case a string could not be found in a pre-defined list. This is useful to suggest corrections to the user, who may have misspelled it.

Example:

vec1s s = {"wircam_K", "hawki_Ks", "subaru_B"};
vec1u d = distance(s, "wirkam_Ks");
d; // {2, 8, 8}

// Nearest match
std::string m = s[min_id(d)];
m; // "wircam_K"

 Split and combine

Split and combine

Defined in header <vif/utility/string.hpp>.

split, split_any_of

vec1s split(const std::string& s, const std::string& p); // [1]

vec1s split_if_any_of(const std::string string& s, const std::string& c); //[2]

Function [1] will split the string s into a vector of sub-strings each time the pattern p occurs. If no such pattern is found in s, the function returns a vector containing a single element which is the whole string s. It should be used to parse lists of values separated by a fixed pattern, like a coma (',').

Function [2] will split the string s into a vector of sub-strings each time any of the characters listed in c occurs. If no such character is found in s, the function returns a vector containing a single element which is the whole string s. It should be used to isolate values that are separated by a variable amount of characters, such as spaces.

Example:

vec1s str = split("foo,bar,bob", ",");
str; // {"foo", "bar", "bob"};

// Difference between split and split_any_of:
std::string s;

s = " this is the end";
str = split(s, " ");
str; // {"", "", this", "is", "the", "", "", "end"};
str = split_any_of(s, " ");
str; // {"this", "is", "the", "end"};

s = "foo, bar , bob";
str = split(s, ",");
str; // {"foo", " bar ", " bob"};
str = split_any_of(s, ", ");
str; // {"foo", "bar", "bob"};

// Use case: split a line of text into words
str = split_any_of(/* ... */, " \t\n\r");

cut

vec1s cut(const std::string& s, uint_t n); // [1]

This function will split the string s into a vector of sub-strings (or “lines”) that are exactly n characters long (except possibly the last line, which may be shorter). Contrary to the function wrap(), this function does not care about spaces and word boundaries.

Example:

vec1s str = cut("this is the end", 5);
str; // {"this ", "is th", "e end"};

wrap

vec1s wrap(const std::string& s, uint_t w, const std::string& i = "", bool e = false); // [1]

This function will split the string s into a vector of sub-strings (or “lines”) that are at most w characters long. Contrary to the function cut(), this function takes care of not splitting the line in the middle of a word. When this would occur, the cut is shifted back to just before the beginning of the word, and that word is flushed to the next line. If a word is larger than w, then it will be left alone on its own line. Alternatively, if e is set to true, the word is truncated and the last characters are lost and replaced by an ellipsis ("...") to notify that the word has been truncated. Finally, the parameter i can be used to add indentation: these characters are added at the beginning of each line and are taken into account when calculating the line length. In this case, the first line is not automatically indented, to allow using a different header. This function is useful to display multi-line messages on the terminal.

Example:

std::string str = "This is an example text with many words. Just "
 " for the sake of the example, we are going to write a "
 "veryyyyyyyyyyyyyyyyyyyyyyyyyy long word.";

vec1s s = wrap(str, 23);
s[0]; // "This is an example text"
s[1]; // "with many words. Just "
s[2]; // "for the sake of the"
s[3]; // "example, we are going"
s[4]; // "to write a"
s[5]; // "veryyyyyyyyyyyyyyyyyyyyyyyyyy"
s[6]; // "long word."

vec1s s = wrap(str, 23, "", true);
s[0]; // "This is an example text"
s[1]; // "with many words. Just "
s[2]; // "for the sake of the"
s[3]; // "example, we are going"
s[4]; // "to write a"
s[5]; // "veryyyyyyyyyyyyyyyyy..."
s[6]; // "long word."

vec1s s = wrap(str, 23, " ", true);
s[0]; // "This is an example text"
s[1]; // " with many words. Just"
s[2]; // " for the sake of the"
s[3]; // " example, we are going"
s[4]; // " to write a"
s[5]; // " veryyyyyyyyyyyyyyy..."
s[6]; // " long word."

collapse

template<std::size_t D>
std::string collapse(vec<D,std::string> v, const std::string& s = ""); // [1]

This function will concatenate together all the strings present in the vector v to form a single string. A separator can be provided using the argument s, in which case the string s will be inserted between each pair of strings of v before concatenation.

Example:

vec1s v = {"a", "b", "c"};
std::string s = collapse(v);
s; // "abc"

s = collapse(v, ", ");
s; // "a, b, c"

 Formatting

Formatting

Defined in header <vif/utility/string.hpp>.

trim

std::string trim(std::string s, const std::string& c = " \t"); // [1]

template<std::size_t D>
vec<D,std::string> trim(vec<D,std::string> s, const std::string& c = " \t"); // [2]

The function [1] will look at the beginning and end of the string s for any of the characters that is present in c (order is irrelevant), and remove them. This procedure is repeated until no such character is found. The net effect of this function is that the provided string s is trimmed from any of the characters listed in c. This is useful for example to remove leading and trailing spaces of a string (which is what the default value of c does), or to removes quotes, leading zeroes, etc. The function [2] is the vectorized version of [1].

Example:

vec1s str = {"", "abc", " a b", " a b c "};
vec1s t = trim(str, " "); // trim spaces
t; // {"", "abc", "a b", "a b c"}

str = {"", "(a,b)", "((a,b),c)"};
t = trim(str, "()"); // trim parentheses
t; // {"", "a,b", "a,b),c"}

to_upper, to_lower

std::string to_upper(std::string s); // [1]

std::string to_lower(std::string s); // [2]

template<typename T>
vec<D,std::string> to_upper(vec<D,std::string> s); // [3]

template<typename T>
vec<D,std::string> to_lower(vec<D,std::string> s); // [4]

These functions will transform all characters of the string to be upper case ([1]) or lower case ([2]). It has no effect on non-alphabetic characters such as numbers, punctuation, of special characters. Functions [3] and [4] are the vectorized versions of [1] and [2], respectively.

Example:

vec1s str = {"", "abc", "AbCdE", "No, thanks!"};
vec1s t = to_upper(str);
t; // {"", "ABC", "ABCDE", "NO, THANKS!"}
t = to_lower(str);
t; // {"", "abc", "abcde", "no, thanks!"}

align_left, align_right, align_center

std::string align_left(std::string s, uint_t w, char f = ' '); // [1]

std::string align_right(std::string s, uint_t w, char f = ' '); // [2]

std::string align_center(std::string s, uint_t w, char f = ' '); // [3]

These functions will pad the provided string with the character f (default to a space) so that the total width the returned string is equal to w. If the provided string is larger than w, it is returned untouched. Padding characters will be appended at the end of the string ([1]), at the beginning of the string ([2]), or equally to both ([3]), so the string will be aligned left, right, and centered, respectively.

Example:

std::string s = "5.0";
std::string n = align_left(s, 6);
n; // "5.0 "
n = align_right(s, 6);
n; // " 5.0"
n = align_center(s, 6);
n; // " 5.0 "

// Another padding character can be used
n = align_left(s, 6, '0');
n; // "5.0000"

 Find/replace

Find/replace

Defined in header <vif/utility/string.hpp>.

find

uint_t find(const std::string& s, const std::string& p); // [1]

template<std::size_t D>
vec<D,uint_t> find(const vec<D,std::string>& s, const std::string& p); // [2]

The function [1] returns the position in the string s of the first occurrence of the sub-string p. If no such occurrence is found, the function returns npos. The function [2] is the vectorized version.

Example:

vec1s v = {"Apple", "please", "complementary", "huh?"};
vec1u p = find(v, "ple");
p; // {2, 0, 3, npos}

replace

std::string replace(std::string s, const std::string& p, const std::string& r); // [1]

template<std::size_t D>
vec<D,std::string> replace(vec<D,std::string> s, const std::string& p, const std::string& r); // [2]

The function [1] will look inside the string s for occurrences of the pattern p and replace each of them with the replacement r. The string is unchanged if no occurrence is found. In particular, this function can also be used to remove all the occurrences of p simply by setting r equal to an empty string. The function [2] is the vectorized version.

Example:

vec1s str = {"I eat apples", "The apple is red"};
vec1s r = replace(str, "apple", "pear");
r; // {"I eat pears", "The pear is red"}

str = {"a:b:c", "g::p"};
r = replace(str, ":", ",");
r; // {"a,b,c", "g,,p"};

begins_with, ends_with

bool begins_with(const std::string& s, const std::string& p); // [1]

bool ends_with(const std::string& s, const std::string& p); // [2]

vec<D,bool> begins_with(const vec<D,std::string>& s, const std::string& p); // [3]

vec<D,bool> ends_with(const vec<D,std::string>& s, const std::string& p); // [4]

These functions will return true if the beginning ([1]) or the end ([2]) of the string s exactly matches the string p. The functions [3] and [4] are the vectorized versions.

Example:

vec1s v = {"p1_m2.txt", "p3_c4.fits", "p1_t8.fits"};
vec1b b = begins_with(v, "p1");
b; // {true, false, true}

b = ends_with(v, ".fits");
b; // {false, true, true}

erase_begin, erase_end

std::string erase_begin(std::string s, uint_t n); // [1]

std::string erase_begin(std::string s, const std::string& p); // [2]

std::string erase_end(std::string s, uint_t n); // [3]

std::string erase_end(std::string s, const std::string& p); // [4]

vec<D,std::string> erase_begin(vec<D,std::string> s, uint_t n); // [5]

vec<D,std::string> erase_begin(vec<D,std::string> s, const std::string& p); // [6]

vec<D,std::string> erase_end(vec<D,std::string> s, uint_t n); // [7]

vec<D,std::string> erase_end(vec<D,std::string> s, const std::string& p); // [8]

These functions will erase characters from the beginning ([1] and [2]) or the end ([3] and [4]) of the string s.

Functions [1] and [3] will remove n characters. If n is larger than the size of s, the returned string will be empty. Functions [2] and [4] first check that the string begins or ends with the other string p provided as second argument: if it does, it removes this substring from s; if it does not, an error is reported and the program stops.

Functions [5] to [8] are the vectorized versions of functions [1] to [4], respectively.

Example:

vec1s v = {"p1_m2.txt", "p3_c4.fits", "p1_t8.fits"};
std::string s = erase_begin(v[0], "p1_");
s; // "m2.txt"
s = erase_begin(v[1], "p1_");
// will trigger an error
s = erase_begin(v[2], "p1_");
s; // "t8.fits"

s = erase_end(v[0], ".fits");
// will trigger an error
s = erase_end(v[1], ".fits");
s; // "p3_c4"
s = erase_end(v[2], ".fits");
s; // "p1_t8"

vec1s t = erase_begin(v, 3);
t; // {"m2.txt", "c4.fits", "t8.fits"}
t = erase_end(v, 5);
t; // {"p1_m", "p3_c4", "p1_t8"}

replace_block, replace_blocks

template<typename T>
std::string replace_block(std::string v, const std::string& b, const std::string& e, T f); // [1]

template<typename T>
std::string replace_blocks(std::string v, const std::string& b, const std::string& s, const std::string& e, T f); // [2]

Function [1] looks in the string v and identifies all “blocks” that start with b and end with e. The content of each block is fed to the user-supplied function f which does any kind of conversion or operation on that content, and must returns a new string as a replacement. This new string is then inserted in v and replaces the entire block.

Function [2] does the same thing, except that each block can have multiple “components” that are separed with the separator s. In this case, the function extracts all these “components” and stores them inside a string vector, and feeds this vector to the conversion function f.

See regex_replace for a more powerful (but also more complex and possibly slower) alternative.

Example:

// We want to modify the content inside ... to be upper case
std::string s = "This is a whole lot of money";
std::string ns = replace_block(s, "", "", [](std::string t) {
 return to_upper(t);
});

ns; // "This is a WHOLE lot of MONEY"

// We want to convert this LaTeX link into HTML
s = "Look at \url{http://www.google.com}{this} link.";
ns = replace_blocks(s, "\url{", "}{", "}", [](vec1s t) {
 return ""+t[1]+"";
});

ns; // "Look at this link."

 Regular expressions (regex)

Regular expressions (regex)

Defined in header <vif/utility/string.hpp>.

regex_match

bool regex_match(const std::string& s, const std::string& r); // [1]

template<std::size_t D>
bool regex_match(const vec<D,std::string>& s, const std::string& r); // [2]

Function [1] will return true if the string s matches the regular expression (or “regex” for short) r. This regular expression can be used to identify complex patterns in a string, far more advanced than just matching the existence of a sub-string. This particular implementation uses POSIX regular expressions. The syntax is complex and not particularly intuitive, but it has become a well known standard and is therefore understood by most programmers. A gentle tutorial can be found here [http://www.zytrax.com/tech/web/regex.htm]. If the regular expression is invalid, an error will be reported to diagnose the problem, and the program will stop. Function [2] is the vectorized version.

Note

For regular expression we advise to use C++ raw string literals. Indeed, in these expressions one often needs to use the backslash character (\), but this character is also used in C++ to form special characters, such as '\n' (new line). For this reason, to feed the backslash to the regex compiler one actually needs to escape it: "\\". But the POSIX rules also use \ as an escape character, and so this can quickly cause head aches… (to have a regex matching the backslash character itself, one would have to write "\\\\"!) To avoid this inconvenience, one can enclose the regular expression in R"(...)", and not need to worry about escaping characters from the C++ compiler.

 Hash

Hash

Defined in header <vif/utility/string.hpp>.

hash

template<typename ... Args>
std::string hash(const Args& ... args); // [1]

This function scans all the arguments that are provided, and returns the hexadecimal representation of the SHA-1 “hash” of this argument list. The hash is a string such that: 1) all further calls of hash(...) with arguments that have the exact same value (perhaps when the program is executed a second time later) will always return the same string, and 2) the probability is very small that the function returns the same string for another set of arguments, or arguments with different values. Although this algorithm was created in 1995, the first “collision” (two different data sets producing the same hash) was found in 2017.

This is useful for example to cache the result of some heavy computation: once the computation is done, the input parameters of the computation can be fed to hash() to give a “sort-of-unique” identifier to the “input+result” pair. The result of the computation can then be saved somewhere with the hash as an identifier. Later on, if the computation is requested with a new set of parameters, these parameters are fed to hash() and the resulting string is compared to all the identifiers of the cached results: if a match is found, then the associated pre-computed result can be re-used, else the computation must be executed anew.

Example:

std::string s;

// With a single argument
s = hash("hello world!");
s; // "da52a1357f3c973e1ffc1b694d5308d0abcd9845"
s = hash("hello world?")
s; // "793e673d04e555f8f0b38033d5223c525a040719"
// Notice how changing a single character gives a completely
// different hash string

// With multiple arguments
s = hash(1, 2, 3);
s; // "570331ab965721aae8a8b3c628cae57a21a37560"
s = hash("123");
s; // "0e898437b29ec20c39ca48243e676bcb177d4632"
s = hash(1.0, 2.0, 3.0);
s; // "9c45014f7c7943cb7860f3db4b885fb44b510ec8"
// Notice how the hash is different even though we would
// consider these different sets of values to be equivalent.

 Printing to the terminal

Printing to the terminal

Defined in header <vif/core/print.hpp>.

print

template<typename ... Args>
void print(Args&& ...); // [1]

This function will “print” (or display) the content of all its arguments into the standard output (i.e., the terminal). This has nothing to do with printing things on paper (unless you have set that as your standard output). Arguments are printed one after the other on the same line, without any spacing or separator, and the “end of line” character is printer after the last argument so that the next call of print() will display on a new line. This function should only be used for debugging purposes, or to inform the user of the progress of the program (but see also below and print_progress()).

Example:

uint_t a = 5;
vec1u x = {1,2,3,4,9,10};

print("the program reached this location, a=", a, ", and x=", x);

The above code will display on the terminal:

the program reached this location, a=5, and x={1,2,3,4,9,10}

A few words about formatting.

First, since the text is meant to be sent to a simple terminal window, there are very few options to affect the look and feel of the output. In fact there is currently no option to change fonts, add boldface or italic, or change the color (some of this may be implemented in the future, but it will always remain fairly limited). The only thing you can actually control is when to start a new line. This is done with the special character '\n', and such a line break is always made at the end of each printed message. If you need a finer control of line jumps, you will have to come back to the standard C++ functions for output (i.e., std::cout and the likes).

Second, if you are used to C functions like prinft(), note from the above example how printing in vif behaves quite differently. The print() function does not work with “format strings”, hence the character '%' is not special and can be used safely without escaping. One can print a value that is not a string simply by adding it to the list of the function arguments, which will do the conversion to string automatically based on that argument’s type. See also String conversions for more information on that process. The format of this conversion is defined by the C++ standard library, and is usually fine for most cases. If you need a finer control on the display format (for example for floating point numbers), look at Formatting and format:: functions.

error, warning, note

template<typename ... Args>
void error(...); // [1]

template<typename ... Args>
void warning(...); // [2]

template<typename ... Args>
void note(...); // [3]

These functions behave exactly like print(). The only difference is that they automatically append a “prefix” to the message, namely: "error: " ([1]), "warning: " ([2]), or "note: " ([3]). In some operating systems, these prefixes can be colored to make them stand out better from the regular print() output. These three functions are indeed much more useful than print(), since they are meant to talk to the user of a program rather than the developer. They can be used, for example, to tell the user that something went wrong ([1]), or could go wrong ([2]), or simply to inform them of what’s going on ([3]).

More specifically, function [1] (error()) should be used to print unrecoverable and serious errors. In other words, this is a situation the program was not designed to handle, and it has to stop and tell the user why. Function [2] (warning()) is for recoverable errors (unusual situations for which a workaround is implemented), or situations where the user is likely to have made a mistake (but maybe not). Lastly, function [3] (note()) is for everything else which is not critical and does not require immediate attention. Typically this will be logging, displaying the progress of a calculation, etc. Since these types of messages are not critical, the user should be able to quickly glance over them and ignore them. Is it therefore good practice to offer an option to completely disable this non-critical output, so only errors and warnings are displayed.

Example:

bool verbose = false; // let the user enable extra output only if needed

std::string datafile1 = "toto1.txt";
if (!file::exist(datafile1)) {
 // We cannot work without 'datafile1', print an error
 error("cannot open '", datafile1, "'");
 error("make sure the program is run inside the data directory");
 return 1; // typically, exit the program
}

std::string datafile2 = "toto2.txt";
if (!file::exist(datafile2)) {
 // It's better is we have 'datafile2', but we can work without it.
 // So we print a warning and let the user know what are the
 // consequences of this non-critical issue.
 warning("cannot open '", datafile2, "', so calculation will be less accurate");
 warning("will use '", datafile1, "' as a fallback");
 datafile2 = datafile1;
}

if (verbose) {
 // Things are going fine, inform the user of what we are about to do
 note("analysing the data, please wait...");
}

// Do the stuff...

The above code, if the first file does not exist, will display:

error: cannot open 'toto1.txt'
error: make sure the program is run inside the data directory

prompt

template<typename T>
bool prompt(const std::string& msg, T& v, const std::string& err = ""); // [1]

This function interacts with the user of the program through the standard output and input (i.e., the terminal). It first prints msg, waits for the user to enter a value and press the Enter key, then try to load this value inside v. If the value entered by the user is invalid and cannot be converted into the type T, the program asks again and optionally writes an error message err to clarify the situation.

Currently, the function can only return after successfully reading a value, and always returns true. In the future, it may fail and return false, for example after the user has failed a given number of times. If possible, try to keep the possibility of failure into account.

Example:

uint_t age;
if (prompt("please enter your age: ", age,
 "it better just be an integral number...")) {
 print("your age is: ", age);
} else {
 print("you will do better next time");
}

Here is a possible interaction scenario with a (naive) user:

please enter your age: 15.5
error: it better just be an integral number...
please enter your age: what?
error: it better just be an integral number...
please enter your age: oh I see, it is 15
error: it better just be an integral number...
please enter your age: ok...
error: it better just be an integral number...
please enter your age: 15
your age is: 15

 Interacting with the operating system

Interacting with the operating system

Categories

	Environment variables
	system_var

	Processes
	spawn

	fork

 Environment variables

Environment variables

Defined in header <vif/utility/os.hpp>.

system_var

std::string system_var(const std::string& v, const std::string& d); // [1]

template<typename T>
T system_var(string v, T d); // [2]

These functions looks inside the operating system environment for a variable named v (using the C function getenv()). If this variable exists, its value is returned as a string ([1]), or converted into a value of type T ([2]). If the conversion fails, or if the environment variable does not exist, the default value d is returned instead.

Environment variables are complementary to Command line arguments. They are mostly used to store constant, system-specific configurations that will typically change only between one machine or one user to another. Because they seldom change, it would be tedious to have to specify these configurations as command line arguments and provide them for each call of a given program. Instead, environment variables are set “once and for all” at the beginning of the user’s session (on Linux this is usually done in the ~/.bashrc file, or equivalent), and are read on demand by each program that needs them.

By convention and for portability issues, it is recommended to specify environment variable names in full upper case (i.e., "PATH" and not "Path" or "path").

Example:

// One typical use case is to get the path of some external component
std::string sed_library_dir = system_var("SUPERFIT_LIB_PATH");
if (!sed_library_dir.empty()) {
 // The directory has been provided, look what is inside...
} else {
 // This component is missing, try to do without or print an error
}

// It can also be used to modify generic behaviors, for example
// configure how many threads we want to use by default in all the
// programs of a given tool suite.
uint_t nthread = system_var<uint_t>("MYTOOLS_NTHREADS", 1);

 Processes

Processes

Defined in header <vif/utility/os.hpp>.

spawn

bool spawn(const std::string& cmd);

This function executes the shell command passed in argument (on UNIX systems, using /bin/sh). It puts execution of the current program on hold until the shell command terminates. This can be used to launch another application, for example an image viewer that the user can use to inspect some temporary calculations.

If you wish to run this command in parallel with the current program, see fork().

Example:

// Calculate some things to make an image
vec2d img = /* ... */;

// Write this image to the disk in FITS format
fits::write("tmp.fits", img);

// Call the FITS viewer DS9 on this data and let user inspect it.
// The program will be paused until the user closes DS9.
spawn("ds9 tmp.fits");

// Now execution comes back to us.
// We can, for example, ask the user if the data was satisfactory.

fork

bool fork(const std::string& cmd);

This function creates a new child process to execute the shell command passed in argument (on UNIX systems, using /bin/sh). The child process runs in the background, while execution continues in the main process. Note that any child process will be automatically killed when the main process terminates: child processes cannot survive longer than the main process.

If you wish simply to run a command and wait for it to finish, see spawn().

Example:

// Calculate some things to make an image
vec2d img = /* ... */;

// Write this image to the disk in FITS format
fits::write("tmp.fits", img);

// Call the FITS viewer DS9 on this data to let user inspect it.
// The DS9 window will open in the background.
fork("ds9 tmp.fits");

// Execution comes back to us immediately, so the user can keep
// inspecting the image while we do some more calculations.
// Just be careful not to open too many windows in this way!

 File system

File system

Categories

	File paths manipulation
	file::directorize

	file::is_absolute_path

	file::get_basename

	file::get_extension

	file::remove_extension

	file::split_extension

	file::get_directory

	File system
	file::exists

	file::is_older

	file::list_directories

	file::list_files

	file::explorer

	file::mkdir

	file::copy

	file::remove

	file::to_string

 File paths manipulation

File paths manipulation

Defined in header <vif/io/filesystem.hpp>.

file::directorize

std::string file::directorize(const std::string& p); // [1]

template<std::size_t D>
vec<D,std::string> file::directorize(const vec<D,std::string>& p); // [2]

The function [1] modifies the path given in argument to make sure that a file name can be appended to it and form a valid file path. In UNIX systems, for example, the function ensures that the path ends with a forward slash /.

The function [2] is the vectorized version of [1].

Example:

std::string p;
p = file::directorize("/some/path"); // "/some/path/"
p = file::directorize("/another/path/"); // "/another/path/"

file::is_absolute_path

std::string file::is_absolute_path(const std::string& p); // [1]

template<std::size_t D>
vec<,D,std::string> file::is_absolute_path(const vec<,D,std::string>& p); // [2]

The function [1] returns true if its argument describes an absolute file path, and false otherwise. In UNIX systems, for example, this is equivalent to checking that the path starts with a forward slash / (referencing the root directory).

The function [2] is the vectorized version of [1].

Example:

bool b = file::is_absolute_path("/some/path"); // true
b = file::is_absolute_path("../sub/directory/file.txt"); // false

file::get_basename

std::string file::get_basename(const std::string& p); // [1]

template<std::size_t D>
vec<,D,std::string> file::get_basename(const vec<,D,std::string>& p); // [2]

The function [1] extracts the name of a file from its full path given in argument. If this path is that of a directory, the function returns the name of this directory. This behavior is similar to the bahs function basename.

The function [2] is the vectorized version of [1].

Example:

std::string n = file::get_basename("/some/path"); // "path"
n = file::get_basename("/another/path/to/a/file.txt"); // "file.txt"

file::get_extension

std::string file::get_extension(const std::string& f); // [1]

template<std::size_t D>
vec<,D,std::string> file::get_extension(const vec<,D,std::string>& f); // [2]

The function [1] scans the provided string to look for a file extension. The “extension” is whatever is found at the end the string after the last dot (and including this dot), for example ".cpp". If an extension is found, this function returns it (including the leading dot), else it returns an empty string.

The function [2] is the vectorized version of [1].

Example:

vec1s v = {"p1_m2.txt", "p3_c4.fits", "p1_t8.dat.fits", "readme"};
vec1s s = file::get_extension(v); // {".txt", ".fits", ".fits", ""}

file::remove_extension

std::string file::remove_extension(const std::string& f); // [1]

template<std::size_t D>
vec<,D,std::string> file::remove_extension(const vec<,D,std::string>& f); // [2]

The function [1] scans the provided string to look for a file extension. The “extension” is whatever is found at the end the string after the last dot (and including this dot), for example ".cpp". If an extension is found, this function returns the input string with this extension removed. If no extension is found, the input string returned unchanged.

The function [2] is the vectorized version of [1].

Example:

vec1s v = {"p1_m2.txt", "p3_c4.fits", "p1_t8.dat.fits", "readme"};
vec1s s = file::remove_extension(v); // {"p1_m2", "p3_c4", "p1_t8.dat", "readme"}

file::split_extension

std::pair<std::string> file::split_extension(const std::string& f); // [1]

template<std::size_t D>
vec<D,std::pair<std::string>> file::split_extension(const vec<,D,std::string>& f); // [2]

The function [1] scans the provided string to look for a file extension. The “extension” is whatever is found at the end the string after the last dot (and including this dot), for example ".cpp". If an extension is found, this function splits the input string into two substrings, the first being the string with the extension removed (see file::remove_extension()), and the second being the extension itself (see file::get_extension()).

The function [2] is the vectorized version of [1].

Example:

auto p = file::split_extension("p1_m2.txt");
p.first; // "p1_m2"
p.second; // ".txt"

file::get_directory

string file::get_directory(const std::string& p); // [1]

template<std::size_t D>
vec<,D,std::string> file::get_directory(const vec<,D,std::string>& p); // [2]

The function [1] scans the path given in argument and returns the path to the parent directory. This behavior is similar to the bash function dirname, except that here the returned path always ends with a forward slash /.

The function [2] is the vectorized version of [1].

Example:

std::string n;
n = file::get_directory("/some/path"); // "/some/"
n = file::get_directory("/another/path/to/a/file.txt"); // "/another/path/to/a/"

 File system

File system

Defined in header <vif/io/filesystem.hpp>.

file::exists

bool file::exists(const std::string& f); // [1]

template<std::size_t D>
vec<D,bool> file::exists(const vec<D,std::string>& f); // [2]

The function [1] returns true if a file (or directory) exists at the location given in f, and false otherwise.

The function [2] is the vectorized version of [1].

Example:

bool b;
b = file::exists("~/.vifrc"); // hopefully true
b = file::exists("/i/do/not/exist"); // probably false

file::is_older

bool file::is_older(const std::string& f1, const std::string& f2); // [1]

template<std::size_t D>
vec<D,bool> file::is_older(const vec<D,std::string>& f1, const std::string& f2); // [2]

The function [1] returns true if the file (or directory) f1 is older than the file (or directory) f2. The “age” of a file corresponds to the time spent since that file was last modified. If one of the two files does not exists, the function returns false.

The function [2] is the vectorized version of [1], where all files in f1 are compared against the same file f2.

Example:

bool b = file::is_older("~/.vifrc", "/usr/bin/cp"); // maybe false?

file::list_directories

vec1s file::list_directories(const std::string& d, const std::string& p = "");

This function returns the list of all the subdirectories inside the directory d that match the search pattern p. Only the names of the directories are returned, not their full paths. When the search pattern is empty (default), all the directories are returned. Otherwise, the pattern can contain any number of “wildcard” character * to filter the output, as when listing files in bash (see examples below).

Hidden directories are ignored. An empty list is returned if there is no subdirectory matching the pattern, or if the operation could not be performed (that is, if d doest not exist, or is not a directory, or if you do not have read access to it). The function does not look inside subdirectories recursively. The order of the directories in the output list is undefined and should not be relied upon: if you need a sorted list, you have to sort it yourself.

Example:

vec1s d = file::list_directories("./");
d; // subdirectories of the working directory

d = file::list_directories("/path/to/vif/");
d; // {"cmake", "test", "doc", "bin", "include", "tools"}

d = file::list_directories("/path/to/vif/", "t*");
d; // {"test", "tools"}

file::list_files

vec1s file::list_files(const std::string& d, const std::string& p = "");

This function returns the list of all the files inside the directory d that match the search pattern p. Only the names of the files are returned, not their full paths. When the search pattern is empty (default), all the files are returned. Otherwise, the pattern can contain any number of “wildcard” character * to filter the output, as when listing files in bash (see examples below).

Hidden files are ignored. An empty list is returned if there is no file matching the pattern, or if the operation could not be performed (that is, if d doest not exist, or is not a directory, or if you do not have read access to it). The function does not look inside subdirectories recursively. The order of the files in the output list is undefined and should not be relied upon: if you need a sorted list, you have to sort it yourself.

Example:

vec1s d = file::list_files("./");
d; // files in the working directory

d = file::list_files("/path/to/vif/doc");
d; // {"vif.pdf", "compile.sh", "vif.tex"}

d = file::list_files("/path/to/vif/doc", "*.tex");
d; // {"vif.tex"}

file::explorer

class file::explorer {
public:
 struct file_data {
 std::string full_path;
 std::string name;
 uint_t size;
 bool is_hidden = false;
 bool is_dir = false;
 };

 // Constructors
 explorer(); // [1]
 explorer(const std::string& d, const std::string& p = ""); // [2]

 void open(const std::string& d, const std::string& p = ""); // [3]
 bool find_next(file_data& f); // [4]
 void close(); // [5]
};

This class allows you to browse through the content of a directory, to list the files and other directories it contains. Its interface is similar to std::ifstream: it can be default-constructed ([1]) then initialized with open() ([3]), or this can be achieved in a single step using the constructor [2], which takes the same arguments as open().

To use this class, you must first open a directory, either with [2] or [3]: the class will attempt to open the directory d and initialize a new search, optionally with a search pattern p. If the directory does not exist or is not readable, open() will return false, and the search will be aborted (subsequent calls to find_next() will return false). The search pattern must constain at least one wildcard character * to indicate which part of the files (or directories) name is allowed to vary, like when listing files in bash.

Once the directory is open, you can iterate over its content using find_next() ([4]). This function take a pre-constructed file_data in argument, in which it will fill the details of the next file it found. If no more file is found (i.e., if the previous call to find_next() returned the last file), this function returns false and the file_data is not modified (should not be used).

The file_data object is a simple structure holding basic informations about the file (or directory): name is the name the file, full_path is the name appended to the search directory d, size is the size of the file (in bytes), is_hidden is true for hidden files or directories, and is_dir is true for directories and false for files.

Once you are done with a search, you can let the explorer instance be destroyed at the end of its scope. This will call close() ([5]) automatically. If you need to close the access to the directory immediately, or if you wish to start another search, you can also call close() explicitly.

Example:

// Create explorer
file::explorer e;

// Try to open directory
if (e.open("some/dir", "*.cpp")) {
 // Success, now list the files/directories
 file::explorer::file_data f;
 while (e.find_next(f)) {
 // We found a file/directory, do something with it:
 print("found ",
 (f.is_hidden ? "hidden " : ""),
 (f.is_dir ? "directory " : "file "),
 f.name, " (size: ", f.size, ")");
 }
} else {
 // Failed
 error("could not open directory some/dir");
}

file::mkdir

bool file::mkdir(const std::string& d); // [1]

template<std::size_t D>
vec<D,bool> file::mkdir(const vec<D,std::string>& d); // [2]

The function [1] creates a new directory at the path given in argument (including all the parent directories, if necessary), and returns true. If the directory could not be created (e.g., because of permission issues), the function returns false. If the directory already exists, the function does nothing and returns true. This function is equivalent to the bash function mkdir -p.

The function [2] is the vectorized version of [1].

Example:

bool b = file::mkdir("/path/to/vif/a/new/directory");
// Will most likely create the directories:
// - /path/to/vif/a
// - /path/to/vif/a/new
// - /path/to/vif/a/new/directory
b; // maybe true or false, depending on your permissions

file::copy

bool file::copy(const std::string& from, const std::string& to);

This function creates a copy of the file from at the location given in to and returns true. If the new file could not be created (e.g., because of permission issues or because its parent directory does not exist), or if the file from could not be found or read, the function returns false. If the file to already exists, it will be overwritten without warning. Copying directories is not presently supported. This function is equivalent to the bash function cp -f.

Example:

bool b = file::copy("/home/joe/.vifrc", "/home/bob/.vifrc");
b; // maybe true or false, depending on your permissions

file::remove

bool file::remove(const std::string& f);

This function will delete the file (or directory) given in argument and return true on success, or if the file did not exist. It will return false only if the file exists but could not be removed (i.e., because you are lacking the right permissions). This function is equivalent to the bash function rm -rf.

Example:

// That's a bad idea, but for the sake of the example...
bool b = file::remove("/home/joe/.vifrc");
b; // probably true

file::to_string

std::string file::to_string(const std::string& f);

This function reads the content of the file whose path is given in argument, stores all the characters (including line break characters and spaces) inside a string and returns it. If the file does not exist, the function returns an empty string.

Warning

This is a very sub-optimal way of reading the content of a file, and it should only be attempted on short files. If you need to read a file line by line, use std::getline() instead. If you need to read a data table, use the dedicated functions in ASCII tables.

 ASCII tables

ASCII tables

Defined in header <vif/io/ascii.hpp>.

ascii::read_table

template<typename ... Args>
void ascii::read_table(std::string f, Args&& ... args); // [1]

template<typename ... Args>
void ascii::read_table(std::string f, const ascii::input_format& o, Args&& ... args); // [2]

These functions read the content of the ASCII table whose path is given in f, and stores the data inside the vectors listed in args. Each column of the file will be stored in a separate vector, in the order in which they are provided to the function. If there is more columns than vectors, the extra columns are ignored. If there is more vectors than columns, the program will stop and report an error.

Function [1] assumes a number of default options regarding the layout of the table. In particular, it assumes the columns are separated by white spaces, and that there may be a header at the beginning of the table (lines starting with the character '#') that must be skipped before reading the data. See below for more detail on how the table data is read. Below is an example of such a table.

Example:

my_table.dat
id x y
 0 10 20
 5 -1 3.5
 6 0 20
 8 5 1
 22 6.5 -5

We can read this in C++ with the following code:

// Declare the vectors that will receive the data
vec1u id;
vec1f x, y;

// Read the data, asking for three columns.
ascii::read_table("my_table.dat", id, x, y);

// Use the vectors
print(id); // {0, 5, 6, 8, 22}

Warning

Beware that, with these functions, the names of the C++ vectors are not used to identify the data in the file, and the information contained in the table header is plainly ignored. Only the order of the columns and vectors matters.

 FITS files

FITS files

Categories

	Overview
	A few words on the FITS format

	The FITS implementation in vif

	General information on the FITS classes

	Open/close files
	open

	close

	is_open

	filename

	flush

	flush_buffer

	Managing HDUs
	hdu_count

	current_hdu

	hdu_type

	reach_hdu

	remove_hdu

	axis_count

	image_dims

	Header & keywords
	has_keyword

	read_keyword

	write_keyword, add_keyword

	remove_keyword

	FITS images

	FITS tables

	C interface
	cfitstio_status

	cfitsio_ptr

	update_internal_state

 Overview

Overview

Defined in header <vif/io/fits.hpp>.

A few words on the FITS format

The FITS (Flexible Image Transport System) format is a general purpose file format originally developed for astrophysics data. In particular, FITS files can store images with integer or floating point pixel values, image cubes (with more than two dimensions), but also binary data tables with an arbitrary number of columns and rows. Using a meta-data system (keywords in a header), FITS files usually carry a number of important additional informations about their content. For example, for images files, this can be the mapping between image pixels and sky coordinates (WCS coordinates), or the physical unit of the pixel values.

A single file can contain any number of Header-Data Units (HDUs), which can be seen as independent “extensions” of the file. Each such extension can contain either image data or table data, and has its own header and keywords for storing meta-data. The first HDU of a FITS file has a special status and is called the “primary HDU”; it can only contain image data. For this reason FITS tables always have an empty primary HDU, and the table data located in the first extension.

Writing tabulated data in a binary FITS file is a space-efficient and fast way to store and read non-image data, vastly superior to using human-readable ASCII tables. FITS tables come in two fashions: row-oriented and column-oriented tables. In row-oriented tables, all the data about one row (e.g., about one galaxy in the table) is stored contiguously on disk. This means that it is very fast to retrieve all the information about a given object. In column-oriented tables however, a whole column is stored contiguously in memory. This means that it is very fast to read a given column for all the objects in the table. This distinction is analogous to the dilemma of choosing between a structure-of-array (column-oriented) or an array-of-structures (row-oriented).

Since vif vectors are also contiguous in memory and are used to store data from a given column, the column-oriented format is the most efficient, and is therefore the default format in vif. An additional benefit of this format is that it allows storing columns of different lengths, which is particularly useful to carry meta-data that would be hard to store in FITS keywords. The column-oriented format is not well known, but most softwares and libraries do support it. Topcat [http://www.star.bris.ac.uk/~mbt/topcat/] does, and in IDL column-oriented FITS files are supported naturally by the mrdfits [https://www.harrisgeospatial.com/docs/mrdfits.html] and mwrfits [https://www.harrisgeospatial.com/docs/mwrfits.html] procedures. But since row-oriented files are nevertheless very common, vif is capable of reading and writing in both formats.

The FITS implementation in vif

Because FITS files can have a complex structure, vif offers three different interfaces to interact with them, which offer different levels of abstraction, capabilities, and ease of use.

The lowest level interface is the raw C interface of the CFITSIO [https://heasarc.gsfc.nasa.gov/fitsio/] library. This interface allows the finest control over the FITS file structure, however it is more cumbersome to use and more error prone. Unless you need to do something very specific that the other interfaces cannot achieve, it is not recommended to use the CFITSIO interface directly. If you do need to use it, please refer to the official CFITSIO documentation.

The second interface already has a significantly higher abstraction level. It is available through the classes fits::input_table, fits::output_table, fits::table, fits::input_image, fits::output_image, and fits::image. This is an object-oriented interface, where an instance of one of the classes above represents an open FITS file, through which you can navigate to read and/or write data. This is versatile enough to allow you to create multiple table or image extensions, modify data inside the file (i.e., one pixel, or one cell in a table), and edit individual header keywords.

The last and simplest interface is provided through the free functions fits::read_table(), fits::write_table(), fits::update_table(), fits::read_image(), fits::write_image(), and fits::update_image(). These allow you to read/write/update data from a single extension in a FITS file, all with a single function call. They are most convenient when dealing with simple FITS files, however they are less powerful than the object-oriented interface described above.

The object-oriented interface is implemented directly on top of the CFITSIO C API, and the simple free-function interface is implemented on top of the object-oriented interface. These interfaces are not based on the official CFITSIO C++ wrapper, CCFITS [https://heasarc.gsfc.nasa.gov/fitsio/CCfits/], mostly because its level of abstraction is too high such that it was not possible to implement all the required features with it. This official wrapper could have simply been adopted as the default FITS implementation in vif, however its design choices conflicted too blatantly with the vif “mindset” (different choice of container types, class hierarchy too deep, and notion of HDU too central).

General information on the FITS classes

The class hierarchy is roughly modeled around the std::iostream interface:

[image: FITS class hierarchy]A file can be opened directly by providing the file name in the constructor, or using the open() member function. Memory and other resources are freed automatically in the destructor of the object, however it is possible to close the file early if needed using the close() member function. When the file is open, classes fits::input_image, fits::output_image, and fits::image will automatically go to the first extension of the file containing image data, likewise with fits::input_table, fits::output_table, and fits::table and table data.

Any invalid operation will raise an exception of the type fits::exception (with fits::exception::what() providing a text message describing the error). It is safe to recover from exceptions raised when attempting invalid data read operations (incorrect image format, unknown table columns, …). However, write operations are not exception-safe; if they happen, the only safe course of action is to close the file and consider its content as corrupted.

If an instance of any of these classes is shared by multiple execution threads, all operations (even simple queries about the state of the file) must be protected by a mutex lock. In contrast, multiple instances can be used in multiple threads without locking as long as:

	each instance is used by a single thread only,

	all instances are pointing to different files, or instances pointing to the same file are all performing read operations only.

 Open/close files

Open/close files

Defined in header <vif/io/fits.hpp>.

open

void fits::file_base::open(std::string f);

This function will open a new FITS file for read or write access (depending on the actual class that is used).

Example:

// Open a file directly in the constructor
fits::input_image img1("my_image.fits");

// Open a file later using open()
fits::input_image img2;
img2.open("my_image.fits");

If there is already a file open when open() is called, that file is closed before the new file is opened.

When requesting only read access (i.e., with the classes fits::input_image or fits::input_table), an exception will be raised if the file does not exist or cannot be accessed with read permission. When requesting only write access (i.e., with the classes fits::output_image or fits::output_table), a new file will be created regardless of whether a file with the provided name already exists or not, and an exception will be raised if the file cannot be created. When requesting read/write access (i.e., with the classes fits::image or fits::table), an exception will be raised if the file does not exist or cannot be accessed with read/write permission.

This function is partially exception-safe: if a file was previously open before the call and an exception is raised, that file will be closed and no data will be lost. Aside from this minor point, the instance can be used safely after recovering from an exception raised by open().

It is possible to open the same file multiple times as different objects, but this is not safe when performing write operations. It is, however, perfectly safe to read data from the same file through two objects:

// Open the same file twice for reading data
fits::input_image img1, img2;
img1.open("my_image.fits");
img2.open("my_image.fits");
// Perform read operations (safe)
vec2d image1, image2;
img1.read(image1);
img1.read(image2);

close

void fits::file_base::close() noexcept;

This function will close the currently opened FITS file (if any). If data was written to the file, it will be force-flushed to the disk to ensure no data is lost before the file is closed.

This function is called automatically in the destructor, so you do not need to call it explicitly unless you want to close the file before the end of the object’s lifetime.

If the file cannot be properly closed for any reason, this function will not raise an exception and simply consider the file as closed.

Example:

// Open a file
fits::input_image img("my_image.fits");
// Perform some operations
// ...
// Close the file early
img.close();
// A new file must now be opened before doing further operations

is_open

bool fits::file_base::is_open() const noexcept;

This function checks if a file is currently open.

Example:

// Create a FITS image object with no opened file yet
fits::input_image img;
img.is_open(); // false
// Open a file
img.open("my_image.fits");
img.is_open(); // true

filename

const std::string& fits::file_base::filename() const noexcept;

This function returns the name of the currently opened file (or blank if no file is opened).

Example:

fits::input_image img("my_image.fits");
img.filename(); // "my_image.fits"

flush

void fits::output_file_base::flush();

This function will perform any pending write operation to the disk and only return when all the data has been written. It will perform a full update of the file, including binary data and header data. Only available for output files. Will throw an exception if no file is currently open.

Indeed, as with any disk write operation in the C++ standard library, CFITSIO write operations use a write buffer which is only written to the disk occasionally, rather than on any write operation. This is done for performance reasons. The downside of this approach is that the data is not always immediately written to the disk, even after a call to write() has returned. This usually is not an issue, except when one wants to access the content of the file while it is being written, or if the program crashed while data was not yet written to the file.

Example:

// Open a FITS image for writing
fits::output_image img("my_image.fits");
// Write some data
img.write(data);
// Force writing data to disk now
img.flush();

flush_buffer

void fits::output_file_base::flush_buffer();

This function will perform any pending write operation to the disk and only return when all the data has been written. Contrary to flush(), it will only flush the binary data, and not the header data. This will be faster but less complete; only use this if you know the header data is likely to already be up-to-date. See flush() for more information. Only available for output files. Will throw an exception if no file is currently open.

 Managing HDUs

Managing HDUs

Defined in header <vif/io/fits.hpp>.

hdu_count

uint_t fits::file_base::hdu_count() const;

This function returns the number of HDUs (or extensions) currently present in the file. This includes the “primary HDU” (extension with ID 0), and therefore should always be larger or equal to one. Will throw an exception if no file is currently open.

Example:

// Open a FITS image for writing
fits::output_image img("my_image.fits");
img.hdu_count(); // 1 (only the primary HDU)
// Reach some other HDU
img.reach_hdu(1);
img.hdu_count(); // 2

current_hdu

uint_t fits::file_base::current_hdu() const;

This function returns the ID of the current HDU (or extension). The “primary HDU” has ID of 0, and every following HDU has its ID incremented by one. Will throw an exception if no file is currently open.

Example:

// Open a FITS image for writing
fits::output_image img("my_image.fits");
img.current_hdu(); // 0 (the primary HDU)
// Reach some other HDU
img.reach_hdu(1);
img.current_hdu(); // 1

hdu_type

fits::hdu_type fits::file_base::hdu_type() const;

This function attempts to identify the content in the current HDU, determining whether it is an image (fits::image_hdu), a table (fits::table_hdu), or an empty HDU (fits::empty_hdu). If it could not decide, it returns fits::null_hdu. The function will throw an exception if the header contains keywords with invalid values, or if no file is currently open.

Example:

// Open a FITS image for writing
fits::output_image img("my_image.fits");
img.hdu_type(); // fits::empty_hdu (the primary HDU is initially empty)
// Write some data
img.write(data);
img.hdu_type(); // fits::image_hdu

reach_hdu

void fits::file_base::reach_hdu(uint_t hdu);

This function attempts to reach the requested HDU to start reading/writing data from/to it. If this HDU does not exist and the file was opened only with read access, the function will throw an exception. If the file was opened with write access, the function will insert as many empty HDUs as required so that the requested HDU exists, and then reach it for read/write operations. Will throw an exception if no file is currently open.

Example:

// Open a FITS image for writing; we start at the primary HDU (ID 0)
fits::output_image img("my_image.fits");
// Reach some other HDU
img.reach_hdu(2);
// Write data there
vec2d data(10,10);
img.write(data);
// The file now contains:
// - an empty primary HDU (ID 0)
// - an empty first extension (ID 1)
// - the image data in the second extension (ID 2)

remove_hdu

void fits::file_base::remove_hdu();

This function removes the current HDU from the file. If other HDUs existed after the current HDU, their IDs are decreased by one, to fill the gap. This function will throw an exception when attempting to remove the primary HDU, as by definition it cannot be removed. Will throw an exception if no file is currently open. Only available for output files.

Example:

// Open a FITS image for writing; we start at the primary HDU (ID 0)
fits::output_image img("my_image.fits");
// Reach some other HDU
img.reach_hdu(2);
// Write some data
vec2d data(10,10);
img.write(data)
// The file now contains:
// - an empty primary HDU (ID 0)
// - an empty first extension (ID 1)
// - the image data in the second extension (ID 2)

// Move to the HDU 1
img.reach_hdu(1);
// Remove it
img.remove_hdu();
// The file now contains:
// - an empty primary HDU (ID 0)
// - the image data in the first extension (ID 1)

axis_count

uint_t fits::file_base::axis_count() const;

This function returns the number of axes of the data located in the current HDU. For image data, this is the number of axes (1 for 1D data, 2 for images, 3 for cubes, etc.). For table data and empty HDUs, the function returns zero. Will throw an exception if no file is currently open.

Example:

// Open a FITS image for writing
fits::output_image img("my_image.fits");
img.axis_count(); // 0 (the primary HDU is initially empty)
// Write some data
vec2d data(10,10);
img.write(data);
img.axis_count(); // 2

image_dims

vec1u fits::file_base::image_dims() const;

This function returns the dimensions of the image in the current HDU. If the current HDU is empty or contains table data, this returns an empty vector. Will throw an exception if no file is currently open.

Example:

// Open a FITS image for writing
fits::output_image img("my_image.fits");
img.image_dims(); // {} (the primary HDU is initially empty)
// Write some data
vec2d data(8,10);
img.write(data);
img.image_dims(); // {8,10}

 Header & keywords

Header & keywords

Defined in header <vif/io/fits.hpp>.

has_keyword

bool fits::file_base::has_keyword(std::string name) const;

This function checks if a given keyword exists in the header of the current HDU. This check is not case-sensitive, and the function automatically supports long keyword names specified with the HIERARCH convention; it is not necessary to specify the HIERARCH explicitly. Will throw an exception if no file is currently open.

Example:

// Open a FITS image
fits::input_image img("my_image.fits");
img.has_keyword("BUNIT"); // does this image have a unit?

read_keyword

template<typename T>
bool fits::file_base::read_keyword(std::string name, T& value) const;

This function checks if a given keyword exists in the header of the current HDU, and if the keyword exits, attempts to read its value and store it into the variable value. This check is not case-sensitive, and the function automatically supports long keyword names specified with the HIERARCH convention; it is not necessary to specify the HIERARCH explicitly. If any of these steps fail, the content of value is unchanged and the function returns false. Will throw an exception if no file is currently open.

Example:

// Open a FITS image
fits::input_image img("my_image.fits");
std::string unit;
if (img.read_keyword("BUNIT", unit)) {
 // We know the unit of the image
}
double frequency;
if (img.read_keyword("FREQ", frequency)) {
 // We know the frequency at which the image was obtained
}

write_keyword, add_keyword

template<typename T>
void fits::output_file_base::write_keyword(std::string name, const T& value); // [1]
template<typename T>
void fits::output_file_base::add_keyword(std::string name, const T& value); // [2]

These functions write the given keyword into the header of the current HDU, setting its value to the provided value. If a keyword with this name already exist, function [1] will update its value, while function [2] will simply ignore it and add a new keyword with the same name at the end of the header (it is indeed possible to have multiple keywords with the same name). If the keyword name is longer than 8 characters, CFITSIO will automatically write the keyword with the HIERARCH convention; it is not necessary to specify the HIERARCH explicitly. Will throw an exception if no file is currently open.

Example:

// Open a FITS image
fits::output_image img("my_image.fits");
vec2d data(10,10);
img.write(data);
img.write_keyword("BUNIT", "W/m2/sr"); // write a string
img.write_keyword("FREQ", 1.4e9); // write a number

remove_keyword

void fits::output_file_base::remove_keyword(std::string name);

This function will remove the first keyword in the header whose name matches the provided string. No error is generated if no such keyword exists. If the keyword name is longer than 8 characters, CFITSIO will automatically write the keyword with the HIERARCH convention; it is not necessary to specify the HIERARCH explicitly. Will throw an exception if no file is currently open.

Example:

// Open a FITS image
fits::output_image img("my_image.fits");
vec2d data(10,10);
img.write(data);
img.write_keyword("BUNIT", "W/m2/sr"); // write a string
img.remove_keyword("BUNIT"); // we changed our mind, remove it

 FITS images

FITS images

Defined in header <vif/io/fits.hpp>.

 FITS tables

FITS tables

Defined in header <vif/io/fits.hpp>.

 C interface

C interface

Defined in header <vif/io/fits.hpp>.

cfitstio_status

int fits::file_base::cfitstio_status() const noexcept;

This function returns the current CFITSIO error code. Only useful for debugging purposes. If no file is currently open, it will return zero.

Example:

fits::input_image img("my_image.fits");
img.cfitsio_status(); // most likely 0

cfitsio_ptr

fitsfile* fits::file_base::cfitsio_ptr() noexcept;
const fitsfile* fits::file_base::cfitsio_ptr() const noexcept;

These functions returns the underlying CFITSIO file pointer. This is useful if you need to perform an operation that is not available as part of the C++ interface. It is safe to perform any operation with this pointer and then fall back to the C++ interface, however if you do so you must call the update_state() function before using any function of the C++ interface.

If no file is currently open, it will return a null pointer.

Example:

// Open a FITS image
fits::input_image img("my_image.fits");
// Get the underlying CFITSIO pointer
fitsptr* fptr = img.cfitsio_ptr();
// Use the pointer with the raw C interface
// ...
// Update the internal state
img.update_internal_state();
// Continue using the C++ interface

update_internal_state

void fits::file_base::update_internal_state();

This function is called internally by open() and reach_hdu(), and is used to update the internal state of the C++ wrapper based on the current content of the file. You only need to use this function if you perform operations on the file using the raw CFITSIO interface. See cfitsio_ptr() for more information. Will throw an exception if no file is currently open.

 Measuring time

Measuring time

 Mathematics

Mathematics

 Multi threading

Multi threading

 Image manipulation

Image manipulation

 Astronomy library

Astronomy library

 Index

Index

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Documentation

 		
 Overview of the core library

 		
 Vectors

 		
 Overview

 		
 Type aliases

 		
 Size and dimensions

 		
 Initialization and assignment

 		
 Resizing and adding elements

 		
 Type conversion, and casting

 		
 Operator overloading

 		
 Constant vectors

 		
 Indexing

 		
 Flat and multidimensional indices

 		
 Bounds checking, and safe indexing

 		
 Loops, and traversing data

 		
 Partial indexing

 		
 Views

 		
 Overview

 		
 Range indexing

 		
 Filtering and selecting elements

 		
 Differences between views and vectors

 		
 Constant views and views on constant data

 		
 Aliasing

 		
 Known issues, problems, and limitations

 		
 Dangling views

 		
 Invalid views

 		
 Guidelines for writing generic functions

 		
 What is a generic function?

 		
 Summary of guidelines

 		
 Expressing constraints on function arguments

 		
 Supporting initializer lists

 		
 Supporting both vectors and views

 		
 Vectorizing scalar functions

 		
 Output arguments and views

 		
 Creating views

 		
 Metaprogramming helpers

 		
 IDL equivalents

 		
 Crucial differences to always keep in mind

 		
 Other notable differences

 		
 Basics

 		
 Control flow

 		
 Creating, accessing, modifying vectors

 		
 Vector operations

 		
 Finding values

 		
 Introduction

 		
 Interface conventions

 		
 Generic functions

 		
 Range-based iteration

 		
 range

 		
 Index manipulation

 		
 mult_ids

 		
 flat_id

 		
 increment_index_list

 		
 Integer sequences

 		
 indgen

 		
 Rearranging elements and dimensions

 		
 flatten

 		
 reform

 		
 reverse

 		
 shift, inplace_shift

 		
 transpose

 		
 replicate

 		
 sort, inplace_sort

 		
 is_sorted

 		
 append, prepend

 		
 remove, inplace_remove

 		
 Finding elements

 		
 where

 		
 where_first, where_last

 		
 complement

 		
 match

 		
 set_intersection, set_intersection_sorted, set_union, set_union_sorted

 		
 unique_ids, unique_ids_sorted, unique_values, unique_values_sorted

 		
 is_any_of

 		
 bounds, lower_bound, upper_bound

 		
 equal_range

 		
 astar_find

 		
 Error checking

 		
 vif_check

 		
 Command line arguments

 		
 read_args

 		
 Usage examples

 		
 Flags

 		
 Alternative syntax

 		
 String manipulation

 		
 String conversions

 		
 to_string, to_string_vector

 		
 format::precision, format::scientific, format::fixed

 		
 from_string

 		
 Basic string operations

 		
 empty

 		
 length

 		
 keep_first, keep_last

 		
 distance

 		
 Split and combine

 		
 split, split_any_of

 		
 cut

 		
 wrap

 		
 collapse

 		
 Formatting

 		
 trim

 		
 to_upper, to_lower

 		
 align_left, align_right, align_center

 		
 Find/replace

 		
 find

 		
 replace

 		
 begins_with, ends_with

 		
 erase_begin, erase_end

 		
 replace_block, replace_blocks

 		
 Regular expressions (regex)

 		
 regex_match

 		
 regex_extract

 		
 regex_replace

 		
 Hash

 		
 hash

 		
 Printing to the terminal

 		
 print

 		
 error, warning, note

 		
 prompt

 		
 Interacting with the operating system

 		
 Environment variables

 		
 system_var

 		
 Processes

 		
 spawn

 		
 fork

 		
 File system

 		
 File paths manipulation

 		
 file::directorize

 		
 file::is_absolute_path

 		
 file::get_basename

 		
 file::get_extension

 		
 file::remove_extension

 		
 file::split_extension

 		
 file::get_directory

 		
 File system

 		
 file::exists

 		
 file::is_older

 		
 file::list_directories

 		
 file::list_files

 		
 file::explorer

 		
 file::mkdir

 		
 file::copy

 		
 file::remove

 		
 file::to_string

 		
 ASCII tables

 		
 ascii::read_table

 		
 ascii::write_table

 		
 FITS files

 		
 Overview

 		
 A few words on the FITS format

 		
 The FITS implementation in vif

 		
 General information on the FITS classes

 		
 Open/close files

 		
 open

 		
 close

 		
 is_open

 		
 filename

 		
 flush

 		
 flush_buffer

 		
 Managing HDUs

 		
 hdu_count

 		
 current_hdu

 		
 hdu_type

 		
 reach_hdu

 		
 remove_hdu

 		
 axis_count

 		
 image_dims

 		
 Header & keywords

 		
 has_keyword

 		
 read_keyword

 		
 write_keyword, add_keyword

 		
